Reinforcement Learning Theory 5

Moderator: Quanquan Gu


Chat is not available.

Wed 21 July 19:00 - 19:20 PDT

Improved Regret Bound and Experience Replay in Regularized Policy Iteration

Nevena Lazic · Dong Yin · Yasin Abbasi-Yadkori · Csaba Szepesvari

In this work, we study algorithms for learning in infinite-horizon undiscounted Markov decision processes (MDPs) with function approximation. We first show that the regret analysis of the Politex algorithm (a version of regularized policy iteration) can be sharpened from $O(T^{3/4})$ to $O(\sqrt{T})$ under nearly identical assumptions, and instantiate the bound with linear function approximation. Our result provides the first high-probability $O(\sqrt{T})$ regret bound for a computationally efficient algorithm in this setting. The exact implementation of Politex with neural network function approximation is inefficient in terms of memory and computation. Since our analysis suggests that we need to approximate the average of the action-value functions of past policies well, we propose a simple efficient implementation where we train a single Q-function on a replay buffer with past data. We show that this often leads to superior performance over other implementation choices, especially in terms of wall-clock time. Our work also provides a novel theoretical justification for using experience replay within policy iteration algorithms.

[ Paper PDF ] [ ]
Wed 21 July 19:20 - 19:25 PDT

Near-Optimal Model-Free Reinforcement Learning in Non-Stationary Episodic MDPs

Weichao Mao · Kaiqing Zhang · Ruihao Zhu · David Simchi-Levi · Tamer Basar

We consider model-free reinforcement learning (RL) in non-stationary Markov decision processes. Both the reward functions and the state transition functions are allowed to vary arbitrarily over time as long as their cumulative variations do not exceed certain variation budgets. We propose Restarted Q-Learning with Upper Confidence Bounds (RestartQ-UCB), the first model-free algorithm for non-stationary RL, and show that it outperforms existing solutions in terms of dynamic regret. Specifically, RestartQ-UCB with Freedman-type bonus terms achieves a dynamic regret bound of $\widetilde{O}(S^{\frac{1}{3}} A^{\frac{1}{3}} \Delta^{\frac{1}{3}} H T^{\frac{2}{3}})$, where $S$ and $A$ are the numbers of states and actions, respectively, $\Delta>0$ is the variation budget, $H$ is the number of time steps per episode, and $T$ is the total number of time steps. We further show that our algorithm is \emph{nearly optimal} by establishing an information-theoretical lower bound of $\Omega(S^{\frac{1}{3}} A^{\frac{1}{3}} \Delta^{\frac{1}{3}} H^{\frac{2}{3}} T^{\frac{2}{3}})$, the first lower bound in non-stationary RL. Numerical experiments validate the advantages of RestartQ-UCB in terms of both cumulative rewards and computational efficiency. We further demonstrate the power of our results in the context of multi-agent RL, where non-stationarity is a key challenge.

[ Paper PDF ] [ ]
Wed 21 July 19:25 - 19:30 PDT

Optimal Off-Policy Evaluation from Multiple Logging Policies

Nathan Kallus · Yuta Saito · Masatoshi Uehara

We study off-policy evaluation (OPE) from multiple logging policies, each generating a dataset of fixed size, i.e., stratified sampling. Previous work noted that in this setting the ordering of the variances of different importance sampling estimators is instance-dependent, which brings up a dilemma as to which importance sampling weights to use. In this paper, we resolve this dilemma by finding the OPE estimator for multiple loggers with minimum variance for any instance, i.e., the efficient one. In particular, we establish the efficiency bound under stratified sampling and propose an estimator achieving this bound when given consistent $q$-estimates. To guard against misspecification of $q$-functions, we also provide a way to choose the control variate in a hypothesis class to minimize variance. Extensive experiments demonstrate the benefits of our methods' efficiently leveraging of the stratified sampling of off-policy data from multiple loggers.

[ Paper PDF ] [ ]
Wed 21 July 19:30 - 19:35 PDT

Provably Correct Optimization and Exploration with Non-linear Policies

Fei Feng · Wotao Yin · Alekh Agarwal · Lin Yang

Policy optimization methods remain a powerful workhorse in empirical Reinforcement Learning (RL), with a focus on neural policies that can easily reason over complex and continuous state and/or action spaces. Theoretical understanding of strategic exploration in policy-based methods with non-linear function approximation, however, is largely missing. In this paper, we address this question by designing ENIAC, an actor-critic method that allows non-linear function approximation in the critic. We show that under certain assumptions, e.g., a bounded eluder dimension $d$ for the critic class, the learner finds to a near-optimal policy in $\widetilde{O}(\mathrm{poly}(d))$ exploration rounds. The method is robust to model misspecification and strictly extends existing works on linear function approximation. We also develop some computational optimizations of our approach with slightly worse statistical guarantees, and an empirical adaptation building on existing deep RL tools. We empirically evaluate this adaptation, and show that it outperforms prior heuristics inspired by linear methods, establishing the value in correctly reasoning about the agent's uncertainty under non-linear function approximation.

[ Paper PDF ] [ ]
Wed 21 July 19:35 - 19:40 PDT

Safe Reinforcement Learning Using Advantage-Based Intervention

Nolan Wagener · Byron Boots · Ching-An Cheng

Many sequential decision problems involve finding a policy that maximizes total reward while obeying safety constraints. Although much recent research has focused on the development of safe reinforcement learning (RL) algorithms that produce a safe policy after training, ensuring safety during training as well remains an open problem. A fundamental challenge is performing exploration while still satisfying constraints in an unknown Markov decision process (MDP). In this work, we address this problem for the chance-constrained setting.We propose a new algorithm, SAILR, that uses an intervention mechanism based on advantage functions to keep the agent safe throughout training and optimizes the agent's policy using off-the-shelf RL algorithms designed for unconstrained MDPs. Our method comes with strong guarantees on safety during "both" training and deployment (i.e., after training and without the intervention mechanism) and policy performance compared to the optimal safety-constrained policy. In our experiments, we show that SAILR violates constraints far less during training than standard safe RL and constrained MDP approaches and converges to a well-performing policy that can be deployed safely without intervention. Our code is available at

[ Paper PDF ] [ ]
Wed 21 July 19:40 - 19:45 PDT

Robust Pure Exploration in Linear Bandits with Limited Budget

Ayya Alieva · Ashok Cutkosky · Abhimanyu Das

We consider the pure exploration problem in the fixed-budget linear bandit setting. We provide a new algorithm that identifies the best arm with high probability while being robust to unknown levels of observation noise as well as to moderate levels of misspecification in the linear model. Our technique combines prior approaches to pure exploration in the multi-armed bandit problem with optimal experimental design algorithms to obtain both problem dependent and problem independent bounds. Our success probability is never worse than that of an algorithm that ignores the linear structure, but seamlessly takes advantage of such structure when possible. Furthermore, we only need the number of samples to scale with the dimension of the problem rather than the number of arms. We complement our theoretical results with empirical validation.

[ Paper PDF ] [ ]
Wed 21 July 19:45 - 19:50 PDT

Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap

Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu

We provide a unifying view of a large family of previous imitation learning algorithms through the lens of moment matching. At its core, our classification scheme is based on whether the learner attempts to match (1) reward or (2) action-value moments of the expert's behavior, with each option leading to differing algorithmic approaches. By considering adversarially chosen divergences between learner and expert behavior, we are able to derive bounds on policy performance that apply for all algorithms in each of these classes, the first to our knowledge. We also introduce the notion of moment recoverability, implicit in many previous analyses of imitation learning, which allows us to cleanly delineate how well each algorithmic family is able to mitigate compounding errors. We derive three novel algorithm templates (AdVIL, AdRIL, and DAeQuIL) with strong guarantees, simple implementation, and competitive empirical performance.

[ Paper PDF ] [ ]
Wed 21 July 19:50 - 19:55 PDT


[ ]