Session

Applications 1

Moderator: Hima Lakkaraju



Abstract:

Chat is not available.

Wed 21 July 19:00 - 19:20 PDT

(Oral)
Break-It-Fix-It: Unsupervised Learning for Program Repair

Michihiro Yasunaga · Percy Liang

We consider repair tasks: given a critic (e.g., compiler) that assesses the quality of an input, the goal is to train a fixer that converts a bad example (e.g., code with syntax errors) into a good one (e.g., code with no errors). Existing works create training data consisting of (bad, good) pairs by corrupting good examples using heuristics (e.g., dropping tokens). However, fixers trained on this synthetically-generated data do not extrapolate well to the real distribution of bad inputs. To bridge this gap, we propose a new training approach, Break-It-Fix-It (BIFI), which has two key ideas: (i) we use the critic to check a fixer's output on real bad inputs and add good (fixed) outputs to the training data, and (ii) we train a breaker to generate realistic bad code from good code. Based on these ideas, we iteratively update the breaker and the fixer while using them in conjunction to generate more paired data. We evaluate BIFI on two code repair datasets: GitHub-Python, a new dataset we introduce where the goal is to repair Python code with AST parse errors; and DeepFix, where the goal is to repair C code with compiler errors. BIFI outperforms existing methods, obtaining 90.5% repair accuracy on GitHub-Python (+28.5%) and 71.7% on DeepFix (+5.6%). Notably, BIFI does not require any labeled data; we hope it will be a strong starting point for unsupervised learning of various repair tasks.

[ Paper PDF ] [ ]
Wed 21 July 19:20 - 19:25 PDT

(Spotlight)
Policy Analysis using Synthetic Controls in Continuous-Time

Alexis Bellot · Mihaela van der Schaar

Counterfactual estimation using synthetic controls is one of the most successful recent methodological developments in causal inference. Despite its popularity, the current description only considers time series aligned across units and synthetic controls expressed as linear combinations of observed control units. We propose a continuous-time alternative that models the latent counterfactual path explicitly using the formalism of controlled differential equations. This model is directly applicable to the general setting of irregularly-aligned multivariate time series and may be optimized in rich function spaces -- thereby improving on some limitations of existing approaches.

[ Paper PDF ] [ ]
Wed 21 July 19:25 - 19:30 PDT

(Spotlight)
MC-LSTM: Mass-Conserving LSTM

Pieter-Jan Hoedt · Frederik Kratzert · Daniel Klotz · Christina Halmich · Markus Holzleitner · Grey Nearing · Sepp Hochreiter · Günter Klambauer

The success of Convolutional Neural Networks (CNNs) in computer vision is mainly driven by their strong inductive bias, which is strong enough to allow CNNs to solve vision-related tasks with random weights, meaning without learning. Similarly, Long Short-Term Memory (LSTM) has a strong inductive bias towards storing information over time. However, many real-world systems are governed by conservation laws, which lead to the redistribution of particular quantities — e.g.in physical and economical systems. Our novel Mass-Conserving LSTM (MC-LSTM) adheres to these conservation laws by extending the inductive bias of LSTM to model the redistribution of those stored quantities. MC-LSTMs set a new state-of-the-art for neural arithmetic units at learning arithmetic operations, such as addition tasks,which have a strong conservation law, as the sum is constant over time. Further, MC-LSTM is applied to traffic forecasting, modeling a pendulum, and a large benchmark dataset in hydrology, where it sets a new state-of-the-art for predicting peak flows. In the hydrology example, we show that MC-LSTM states correlate with real world processes and are therefore interpretable.

[ Paper PDF ] [ ]
Wed 21 July 19:30 - 19:35 PDT

(Spotlight)
HyperHyperNetwork for the Design of Antenna Arrays

Shahar Lutati · Lior Wolf

We present deep learning methods for the design of arrays and single instances of small antennas. Each design instance is conditioned on a target radiation pattern and is required to conform to specific spatial dimensions and to include, as part of its metallic structure, a set of predetermined locations. The solution, in the case of a single antenna, is based on a composite neural network that combines a simulation network, a hypernetwork, and a refinement network. In the design of the antenna array, we add an additional design level and employ a hypernetwork within a hypernetwork. The learning objective is based on measuring the similarity of the obtained radiation pattern to the desired one. Our experiments demonstrate that our approach is able to design novel antennas and antenna arrays that are compliant with the design requirements, considerably better than the baseline methods. We compare the solutions obtained by our method to existing designs and demonstrate a high level of overlap. When designing the antenna array of a cellular phone, the obtained solution displays improved properties over the existing one.

[ Paper PDF ] [ ]
Wed 21 July 19:35 - 19:40 PDT

(Spotlight)
SAINT-ACC: Safety-Aware Intelligent Adaptive Cruise Control for Autonomous Vehicles Using Deep Reinforcement Learning

Lokesh Chandra Das · Myounggyu Won

We present a novel adaptive cruise control (ACC) system namely SAINT-ACC: {S}afety-{A}ware {Int}elligent {ACC} system (SAINT-ACC) that is designed to achieve simultaneous optimization of traffic efficiency, driving safety, and driving comfort through dynamic adaptation of the inter-vehicle gap based on deep reinforcement learning (RL). A novel dual RL agent-based approach is developed to seek and adapt the optimal balance between traffic efficiency and driving safety/comfort by effectively controlling the driving safety model parameters and inter-vehicle gap based on macroscopic and microscopic traffic information collected from dynamically changing and complex traffic environments. Results obtained through over 12,000 simulation runs with varying traffic scenarios and penetration rates demonstrate that SAINT-ACC significantly enhances traffic flow, driving safety and comfort compared with a state-of-the-art approach.

[ Paper PDF ] [ ]
Wed 21 July 19:40 - 19:45 PDT

(Spotlight)
12-Lead ECG Reconstruction via Koopman Operators

Tomer Golany · Kira Radinsky · Daniel Freedman · Saar Minha

32% of all global deaths in the world are caused by cardiovascular diseases. Early detection, especially for patients with ischemia or cardiac arrhythmia, is crucial. To reduce the time between symptoms onset and treatment, wearable ECG sensors were developed to allow for the recording of the full 12-lead ECG signal at home. However, if even a single lead is not correctly positioned on the body that lead becomes corrupted, making automatic diagnosis on the basis of the full signal impossible. In this work, we present a methodology to reconstruct missing or noisy leads using the theory of Koopman Operators. Given a dataset consisting of full 12-lead ECGs, we learn a dynamical system describing the evolution of the 12 individual signals together in time. The Koopman theory indicates that there exists a high-dimensional embedding space in which the operator which propagates from one time instant to the next is linear. We therefore learn both the mapping to this embedding space, as well as the corresponding linear operator. Armed with this representation, we are able to impute missing leads by solving a least squares system in the embedding space, which can be achieved efficiently due to the sparse structure of the system. We perform an empirical evaluation using 12-lead ECG signals from thousands of patients, and show that we are able to reconstruct the signals in such way that enables accurate clinical diagnosis.

[ Paper PDF ] [ ]
Wed 21 July 19:45 - 19:50 PDT

(Spotlight)
A large-scale benchmark for few-shot program induction and synthesis

Ferran Alet · Javier Lopez-Contreras · James Koppel · Maxwell Nye · Armando Solar-Lezama · Tomas Lozano-Perez · Leslie Kaelbling · Josh Tenenbaum

A landmark challenge for AI is to learn flexible, powerful representations from small numbers of examples. On an important class of tasks, hypotheses in the form of programs provide extreme generalization capabilities from surprisingly few examples. However, whereas large natural few-shot learning image benchmarks have spurred progress in meta-learning for deep networks, there is no comparably big, natural program-synthesis dataset that can play a similar role. This is because, whereas images are relatively easy to label from internet meta-data or annotated by non-experts, generating meaningful input-output examples for program induction has proven hard to scale. In this work, we propose a new way of leveraging unit tests and natural inputs for small programs as meaningful input-output examples for each sub-program of the overall program. This allows us to create a large-scale naturalistic few-shot program-induction benchmark and propose new challenges in this domain. The evaluation of multiple program induction and synthesis algorithms points to shortcomings of current methods and suggests multiple avenues for future work.

[ Paper PDF ] [ ]
Wed 21 July 19:50 - 19:55 PDT

(Q&A)
Q&A

[ ]