Skip to yearly menu bar Skip to main content


Session

Learning Theory 9

Moderator: Chicheng Zhang

Abstract:
Chat is not available.

Wed 21 July 18:00 - 18:20 PDT

Oral
Cyclically Equivariant Neural Decoders for Cyclic Codes

Xiangyu Chen · Min Ye

Neural decoders were introduced as a generalization of the classic Belief Propagation (BP) decoding algorithms, where the Trellis graph in the BP algorithm is viewed as a neural network, and the weights in the Trellis graph are optimized by training the neural network. In this work, we propose a novel neural decoder for cyclic codes by exploiting their cyclically invariant property. More precisely, we impose a shift invariant structure on the weights of our neural decoder so that any cyclic shift of inputs results in the same cyclic shift of outputs. Extensive simulations with BCH codes and punctured Reed-Muller (RM) codes show that our new decoder consistently outperforms previous neural decoders when decoding cyclic codes. Finally, we propose a list decoding procedure that can significantly reduce the decoding error probability for BCH codes and punctured RM codes. For certain high-rate codes, the gap between our list decoder and the Maximum Likelihood decoder is less than $0.1$dB. Code available at github.com/cyclicallyneuraldecoder

Wed 21 July 18:20 - 18:25 PDT

Spotlight
KO codes: inventing nonlinear encoding and decoding for reliable wireless communication via deep-learning

Ashok Vardhan Makkuva · Xiyang Liu · Mohammad Vahid Jamali · Hessam Mahdavifar · Sewoong Oh · Pramod Viswanath

Landmark codes underpin reliable physical layer communication, e.g., Reed-Muller, BCH, Convolution, Turbo, LDPC, and Polar codes: each is a linear code and represents a mathematical breakthrough. The impact on humanity is huge: each of these codes has been used in global wireless communication standards (satellite, WiFi, cellular). Reliability of communication over the classical additive white Gaussian noise (AWGN) channel enables benchmarking and ranking of the different codes. In this paper, we construct KO codes, a computationally efficient family of deep-learning driven (encoder, decoder) pairs that outperform the state-of-the-art reliability performance on the standardized AWGN channel. KO codes beat state-of-the-art Reed-Muller and Polar codes, under the low-complexity successive cancellation decoding, in the challenging short-to-medium block length regime on the AWGN channel. We show that the gains of KO codes are primarily due to the nonlinear mapping of information bits directly to transmit symbols (bypassing modulation) and yet possess an efficient, high-performance decoder. The key technical innovation that renders this possible is design of a novel family of neural architectures inspired by the computation tree of the {\bf K}ronecker {\bf O}peration (KO) central to Reed-Muller and Polar codes. These architectures pave way for the discovery of a much richer class of hitherto unexplored nonlinear algebraic structures.

Wed 21 July 18:25 - 18:30 PDT

Spotlight
An Information-Geometric Distance on the Space of Tasks

Yansong Gao · Pratik Chaudhari

This paper prescribes a distance between learning tasks modeled as joint distributions on data and labels. Using tools in information geometry, the distance is defined to be the length of the shortest weight trajectory on a Riemannian manifold as a classifier is fitted on an interpolated task. The interpolated task evolves from the source to the target task using an optimal transport formulation. This distance, which we call the "coupled transfer distance" can be compared across different classifier architectures. We develop an algorithm to compute the distance which iteratively transports the marginal on the data of the source task to that of the target task while updating the weights of the classifier to track this evolving data distribution. We develop theory to show that our distance captures the intuitive idea that a good transfer trajectory is the one that keeps the generalization gap small during transfer, in particular at the end on the target task. We perform thorough empirical validation and analysis across diverse image classification datasets to show that the coupled transfer distance correlates strongly with the difficulty of fine-tuning.

Wed 21 July 18:30 - 18:35 PDT

Spotlight
On Perceptual Lossy Compression: The Cost of Perceptual Reconstruction and An Optimal Training Framework

Zeyu Yan · Fei Wen · rendong Ying · Chao Ma · Peilin Liu

Lossy compression algorithms are typically designed to achieve the lowest possible distortion at a given bit rate. However, recent studies show that pursuing high perceptual quality would lead to increase of the lowest achievable distortion (e.g., MSE). This paper provides nontrivial results theoretically revealing that, 1) the cost of achieving perfect perception quality is exactly a doubling of the lowest achievable MSE distortion, 2) an optimal encoder for the “classic” rate-distortion problem is also optimal for the perceptual compression problem, 3) distortion loss is unnecessary for training a perceptual decoder. Further, we propose a novel training framework to achieve the lowest MSE distortion under perfect perception constraint at a given bit rate. This framework uses a GAN with discriminator conditioned on an MSE-optimized encoder, which is superior over the traditional framework using distortion plus adversarial loss. Experiments are provided to verify the theoretical finding and demonstrate the superiority of the proposed training framework.

Wed 21 July 18:35 - 18:40 PDT

Spotlight
Discrete-Valued Latent Preference Matrix Estimation with Graph Side Information

Changhun Jo · Kangwook Lee

Incorporating graph side information into recommender systems has been widely used to better predict ratings, but relatively few works have focused on theoretical guarantees. Ahn et al. (2018) firstly characterized the optimal sample complexity in the presence of graph side information, but the results are limited due to strict, unrealistic assumptions made on the unknown latent preference matrix and the structure of user clusters. In this work, we propose a new model in which 1) the unknown latent preference matrix can have any discrete values, and 2) users can be clustered into multiple clusters, thereby relaxing the assumptions made in prior work. Under this new model, we fully characterize the optimal sample complexity and develop a computationally-efficient algorithm that matches the optimal sample complexity. Our algorithm is robust to model errors and outperforms the existing algorithms in terms of prediction performance on both synthetic and real data.

Wed 21 July 18:40 - 18:45 PDT

Spotlight
A Novel Method to Solve Neural Knapsack Problems

Duanshun Li · Jing Liu · Dongeun Lee · Ali S. Mazloom · Giridhar Kaushik · Kookjin Lee · Noseong Park

0-1 knapsack is of fundamental importance across many fields. In this paper, we present a game-theoretic method to solve 0-1 knapsack problems (KPs) where the number of items (products) is large and the values of items are not predetermined but decided by an external value assignment function (e.g., a neural network in our case) during the optimization process. While existing papers are interested in predicting solutions with neural networks for classical KPs whose objective functions are mostly linear functions, we are interested in solving KPs whose objective functions are neural networks. In other words, we choose a subset of items that maximize the sum of the values predicted by neural networks. Its key challenge is how to optimize the neural network-based non-linear KP objective with a budget constraint. Our solution is inspired by game-theoretic approaches in deep learning, e.g., generative adversarial networks. After formally defining our two-player game, we develop an adaptive gradient ascent method to solve it. In our experiments, our method successfully solves two neural network-based non-linear KPs and conventional linear KPs with 1 million items.

Wed 21 July 18:45 - 18:50 PDT

Spotlight
Chebyshev Polynomial Codes: Task Entanglement-based Coding for Distributed Matrix Multiplication

Sangwoo Hong · Heecheol Yang · Youngseok Yoon · Tae Hyun Cho · Jungwoo Lee

Distributed computing has been a prominent solution to efficiently process massive datasets in parallel. However, the existence of stragglers is one of the major concerns that slows down the overall speed of distributed computing. To deal with this problem, we consider a distributed matrix multiplication scenario where a master assigns multiple tasks to each worker to exploit stragglers' computing ability (which is typically wasted in conventional distributed computing). We propose Chebyshev polynomial codes, which can achieve order-wise improvement in encoding complexity at the master and communication load in distributed matrix multiplication using task entanglement. The key idea of task entanglement is to reduce the number of encoded matrices for multiple tasks assigned to each worker by intertwining encoded matrices. We experimentally demonstrate that, in cloud environments, Chebyshev polynomial codes can provide significant reduction in overall processing time in distributed computing for matrix multiplication, which is a key computational component in modern deep learning.

Wed 21 July 18:50 - 18:55 PDT

Q&A
Q&A