Session
Sparsity and Compressed Sensing
Moderator: Zhouchen Lin
Measuring Robustness in Deep Learning Based Compressive Sensing
Mohammad Zalbagi Darestani · Akshay Chaudhari · Reinhard Heckel
Deep neural networks give state-of-the-art accuracy for reconstructing images from few and noisy measurements, a problem arising for example in accelerated magnetic resonance imaging (MRI). However, recent works have raised concerns that deep-learning-based image reconstruction methods are sensitive to perturbations and are less robust than traditional methods: Neural networks (i) may be sensitive to small, yet adversarially-selected perturbations, (ii) may perform poorly under distribution shifts, and (iii) may fail to recover small but important features in an image. In order to understand the sensitivity to such perturbations, in this work, we measure the robustness of different approaches for image reconstruction including trained and un-trained neural networks as well as traditional sparsity-based methods. We find, contrary to prior works, that both trained and un-trained methods are vulnerable to adversarial perturbations. Moreover, both trained and un-trained methods tuned for a particular dataset suffer very similarly from distribution shifts. Finally, we demonstrate that an image reconstruction method that achieves higher reconstruction quality, also performs better in terms of accurately recovering fine details. Our results indicate that the state-of-the-art deep-learning-based image reconstruction methods provide improved performance than traditional methods without compromising robustness.
Instance-Optimal Compressed Sensing via Posterior Sampling
Ajil Jalal · Sushrut Karmalkar · Alexandros Dimakis · Eric Price
We characterize the measurement complexity of compressed sensing of signals drawn from a known prior distribution, even when the support of the prior is the entire space (rather than, say, sparse vectors). We show for Gaussian measurements and \emph{any} prior distribution on the signal, that the posterior sampling estimator achieves near-optimal recovery guarantees. Moreover, this result is robust to model mismatch, as long as the distribution estimate (e.g., from an invertible generative model) is close to the true distribution in Wasserstein distance. We implement the posterior sampling estimator for deep generative priors using Langevin dynamics, and empirically find that it produces accurate estimates with more diversity than MAP.
A Nullspace Property for Subspace-Preserving Recovery
Mustafa D Kaba · Chong You · Daniel Robinson · Enrique Mallada · Rene Vidal
Much of the theory for classical sparse recovery is based on conditions on the dictionary that are both necessary and sufficient (e.g., nullspace property) or only sufficient (e.g., incoherence and restricted isometry). In contrast, much of the theory for subspace-preserving recovery, the theoretical underpinnings for sparse subspace classification and clustering methods, is based on conditions on the subspaces and the data that are only sufficient (e.g., subspace incoherence and data inner-radius). This paper derives a necessary and sufficient condition for subspace-preserving recovery that is inspired by the classical nullspace property.Based on this novel condition, called here the subspace nullspace property, we derive equivalent characterizations that either admit a clear geometric interpretation that relates data distribution and subspace separation to the recovery success, or can be verified using a finite set of extreme points of a properly defined set. We further exploit these characterizations to derive new sufficient conditions, based on inner-radius and outer-radius measures and dual bounds, that generalize existing conditions and preserve the geometric interpretations. These results fill an important gap in the subspace-preserving recovery literature.
Homomorphic Sensing: Sparsity and Noise
Liangzu Peng · Boshi Wang · Manolis Tsakiris
\emph{Unlabeled sensing} is a recent problem encompassing many data science and engineering applications and typically formulated as solving linear equations whose right-hand side vector has undergone an unknown permutation. It was generalized to the \emph{homomorphic sensing} problem by replacing the unknown permutation with an unknown linear map from a given finite set of linear maps. In this paper we present tighter and simpler conditions for the homomorphic sensing problem to admit a unique solution. We show that this solution is locally stable under noise, while under a sparsity assumption it remains unique under less demanding conditions. Sparsity in the context of unlabeled sensing leads to the problem of \textit{unlabeled compressed sensing}, and a consequence of our general theory is the existence under mild conditions of a unique sparsest solution. On the algorithmic level, we solve unlabeled compressed sensing by an iterative algorithm validated by synthetic data experiments. Finally, under the unifying homomorphic sensing framework we connect unlabeled sensing to other important practical problems.
Active Deep Probabilistic Subsampling
Hans van Gorp · Iris Huijben · Bastiaan Veeling · Nicola Pezzotti · Ruud J. G. van Sloun
Subsampling a signal of interest can reduce costly data transfer, battery drain, radiation exposure and acquisition time in a wide range of problems. The recently proposed Deep Probabilistic Subsampling (DPS) method effectively integrates subsampling in an end-to-end deep learning model, but learns a static pattern for all datapoints. We generalize DPS to a sequential method that actively picks the next sample based on the information acquired so far; dubbed Active-DPS (A-DPS). We validate that A-DPS improves over DPS for MNIST classification at high subsampling rates. Moreover, we demonstrate strong performance in active acquisition Magnetic Resonance Image (MRI) reconstruction, outperforming DPS and other deep learning methods.
Prior Image-Constrained Reconstruction using Style-Based Generative Models
Varun A. Kelkar · Mark Anastasio
Obtaining a useful estimate of an object from highly incomplete imaging measurements remains a holy grail of imaging science. Deep learning methods have shown promise in learning object priors or constraints to improve the conditioning of an ill-posed imaging inverse problem. In this study, a framework for estimating an object of interest that is semantically related to a known prior image, is proposed. An optimization problem is formulated in the disentangled latent space of a style-based generative model, and semantically meaningful constraints are imposed using the disentangled latent representation of the prior image. Stable recovery from incomplete measurements with the help of a prior image is theoretically analyzed. Numerical experiments demonstrating the superior performance of our approach as compared to related methods are presented.
Intermediate Layer Optimization for Inverse Problems using Deep Generative Models
Giannis Daras · Joseph Dean · Ajil Jalal · Alexandros Dimakis
We propose Intermediate Layer Optimization (ILO), a novel optimization algorithm for solving inverse problems with deep generative models. Instead of optimizing only over the initial latent code, we progressively change the input layer obtaining successively more expressive generators. To explore the higher dimensional spaces, our method searches for latent codes that lie within a small l1 ball around the manifold induced by the previous layer. Our theoretical analysis shows that by keeping the radius of the ball relatively small, we can improve the established error bound for compressed sensing with deep generative models. We empirically show that our approach outperforms state-of-the-art methods introduced in StyleGAN2 and PULSE for a wide range of inverse problems including inpainting, denoising, super-resolution and compressed sensing.