Time Series 1

Moderator : Yao Xie

Wed 21 Jul 7 a.m. PDT — 8 a.m. PDT


Chat is not available.

Wed 21 July 7:00 - 7:20 PDT

Inferring serial correlation with dynamic backgrounds

Song Wei · Yao Xie · Dobromir Rahnev

Sequential data with serial correlation and an unknown, unstructured, and dynamic background is ubiquitous in neuroscience, psychology, and econometrics. Inferring serial correlation for such data is a fundamental challenge in statistics. We propose a Total Variation (TV) constrained least square estimator coupled with hypothesis tests to infer the serial correlation in the presence of unknown and unstructured dynamic background. The TV constraint on the dynamic background encourages a piecewise constant structure, which can approximate a wide range of dynamic backgrounds. The tuning parameter is selected via the Ljung-Box test to control the bias-variance trade-off. We establish a non-asymptotic upper bound for the estimation error through variational inequalities. We also derive a lower error bound via Fano's method and show the proposed method is near-optimal. Numerical simulation and a real study in psychology demonstrate the excellent performance of our proposed method compared with the state-of-the-art.

[ Paper PDF ]
Wed 21 July 7:20 - 7:25 PDT

Variance Reduced Training with Stratified Sampling for Forecasting Models

Yucheng Lu · Youngsuk Park · Lifan Chen · Yuyang Wang · Christopher De Sa · Dean Foster

In large-scale time series forecasting, one often encounters the situation where the temporal patterns of time series, while drifting over time, differ from one another in the same dataset. In this paper, we provably show under such heterogeneity, training a forecasting model with commonly used stochastic optimizers (e.g. SGD) potentially suffers large variance on gradient estimation, and thus incurs long-time training. We show that this issue can be efficiently alleviated via stratification, which allows the optimizer to sample from pre-grouped time series strata. For better trading-off gradient variance and computation complexity, we further propose SCott (Stochastic Stratified Control Variate Gradient Descent), a variance reduced SGD-style optimizer that utilizes stratified sampling via control variate. In theory, we provide the convergence guarantee of SCott on smooth non-convex objectives. Empirically, we evaluate SCott and other baseline optimizers on both synthetic and real-world time series forecasting problems, and demonstrate SCott converges faster with respect to both iterations and wall clock time.

[ Paper PDF ]
Wed 21 July 7:25 - 7:30 PDT

Necessary and sufficient conditions for causal feature selection in time series with latent common causes

Atalanti Mastakouri · Bernhard Schölkopf · Dominik Janzing

We study the identification of direct and indirect causes on time series with latent variables, and provide a constrained-based causal feature selection method, which we prove that is both sound and complete under some graph constraints. Our theory and estimation algorithm require only two conditional independence tests for each observed candidate time series to determine whether or not it is a cause of an observed target time series. Furthermore, our selection of the conditioning set is such that it improves signal to noise ratio. We apply our method on real data, and on a wide range of simulated experiments, which yield very low false positive and relatively low false negative rates.

[ Paper PDF ]
Wed 21 July 7:30 - 7:35 PDT

Multiplying Matrices Without Multiplying

Davis Blalock · John Guttag

Multiplying matrices is among the most fundamental and most computationally demanding operations in machine learning and scientific computing. Consequently, the task of efficiently approximating matrix products has received significant attention.

We introduce a learning-based algorithm for this task that greatly outperforms existing methods. Experiments using hundreds of matrices from diverse domains show that it often runs 10x faster than alternatives at a given level of error, as well as 100x faster than exact matrix multiplication. In the common case that one matrix is known ahead of time, our method also has the interesting property that it requires zero multiply-adds.

These results suggest that a mixture of hashing, averaging, and byte shuffling—the core operations of our method—could be a more promising building block for machine learning than the sparsified, factorized, and/or scalar quantized matrix products that have recently been the focus of substantial research and hardware investment.

[ Paper PDF ]
Wed 21 July 7:35 - 7:40 PDT

The Power of Log-Sum-Exp: Sequential Density Ratio Matrix Estimation for Speed-Accuracy Optimization

Taiki Miyagawa · Akinori Ebihara

We propose a model for multiclass classification of time series to make a prediction as early and as accurate as possible. The matrix sequential probability ratio test (MSPRT) is known to be asymptotically optimal for this setting, but contains a critical assumption that hinders broad real-world applications; the MSPRT requires the underlying probability density. To address this problem, we propose to solve density ratio matrix estimation (DRME), a novel type of density ratio estimation that consists of estimating matrices of multiple density ratios with constraints and thus is more challenging than the conventional density ratio estimation. We propose a log-sum-exp-type loss function (LSEL) for solving DRME and prove the following: (i) the LSEL provides the true density ratio matrix as the sample size of the training set increases (consistency); (ii) it assigns larger gradients to harder classes (hard class weighting effect); and (iii) it provides discriminative scores even on class-imbalanced datasets (guess-aversion). Our overall architecture for early classification, MSPRT-TANDEM, statistically significantly outperforms baseline models on four datasets including action recognition, especially in the early stage of sequential observations. Our code and datasets are publicly available.

[ Paper PDF ]
Wed 21 July 7:40 - 7:45 PDT

Data-driven Prediction of General Hamiltonian Dynamics via Learning Exactly-Symplectic Maps

Renyi Chen · Molei Tao

We consider the learning and prediction of nonlinear time series generated by a latent symplectic map. A special case is (not necessarily separable) Hamiltonian systems, whose solution flows give such symplectic maps. For this special case, both generic approaches based on learning the vector field of the latent ODE and specialized approaches based on learning the Hamiltonian that generates the vector field exist. Our method, however, is different as it does not rely on the vector field nor assume its existence; instead, it directly learns the symplectic evolution map in discrete time. Moreover, we do so by representing the symplectic map via a generating function, which we approximate by a neural network (hence the name GFNN). This way, our approximation of the evolution map is always \emph{exactly} symplectic. This additional geometric structure allows the local prediction error at each step to accumulate in a controlled fashion, and we will prove, under reasonable assumptions, that the global prediction error grows at most \emph{linearly} with long prediction time, which significantly improves an otherwise exponential growth. In addition, as a map-based and thus purely data-driven method, GFNN avoids two additional sources of inaccuracies common in vector-field based approaches, namely the error in approximating the vector field by finite difference of the data, and the error in numerical integration of the vector field for making predictions. Numerical experiments further demonstrate our claims.

[ Paper PDF ]
Wed 21 July 7:45 - 7:50 PDT

Learning Stochastic Behaviour from Aggregate Data

Shaojun Ma · Shu Liu · Hongyuan Zha · Haomin Zhou

Learning nonlinear dynamics from aggregate data is a challenging problem because the full trajectory of each individual is not available, namely, the individual observed at one time may not be observed at the next time point, or the identity of individual is unavailable. This is in sharp contrast to learning dynamics with full trajectory data, on which the majority of existing methods are based. We propose a novel method using the weak form of Fokker Planck Equation (FPE) --- a partial differential equation --- to describe the density evolution of data in a sampled form, which is then combined with Wasserstein generative adversarial network (WGAN) in the training process. In such a sample-based framework we are able to learn the nonlinear dynamics from aggregate data without explicitly solving the partial differential equation (PDE) FPE. We demonstrate our approach in the context of a series of synthetic and real-world data sets.

[ Paper PDF ]
Wed 21 July 7:50 - 7:55 PDT