Deep Learning Theory 3

Moderator: Rong Ge


Chat is not available.

Wed 21 July 7:00 - 7:20 PDT

On the Implicit Bias of Initialization Shape: Beyond Infinitesimal Mirror Descent

Shahar Azulay · Edward Moroshko · Mor Shpigel Nacson · Blake Woodworth · Nati Srebro · Amir Globerson · Daniel Soudry

Recent work has highlighted the role of initialization scale in determining the structure of the solutions that gradient methods converge to. In particular, it was shown that large initialization leads to the neural tangent kernel regime solution, whereas small initialization leads to so called ``rich regimes''. However, the initialization structure is richer than the overall scale alone and involves relative magnitudes of different weights and layers in the network. Here we show that these relative scales, which we refer to as initialization shape, play an important role in determining the learned model. We develop a novel technique for deriving the inductive bias of gradient-flow and use it to obtain closed-form implicit regularizers for multiple cases of interest.

Wed 21 July 7:20 - 7:25 PDT

A statistical perspective on distillation

Aditya Menon · Ankit Singh Rawat · Sashank Jakkam Reddi · Seungyeon Kim · Sanjiv Kumar

Knowledge distillation is a technique for improving a student'' model by replacing its one-hot training labels with a label distribution obtained from ateacher'' model. Despite its broad success, several basic questions --- e.g., Why does distillation help? Why do more accurate teachers not necessarily distill better? --- have received limited formal study. In this paper, we present a statistical perspective on distillation which provides an answer to these questions. Our core observation is that a Bayes teacher'' providing the true class-probabilities can lower the variance of the student objective, and thus improve performance. We then establish a bias-variance tradeoff that quantifies the value of teachers that approximate the Bayes class-probabilities. This provides a formal criterion as to what constitutes agood'' teacher, namely, the quality of its probability estimates. Finally, we illustrate how our statistical perspective facilitates novel applications of distillation to bipartite ranking and multiclass retrieval.

Wed 21 July 7:25 - 7:30 PDT

The Lipschitz Constant of Self-Attention

Hyunjik Kim · George Papamakarios · Andriy Mnih

Lipschitz constants of neural networks have been explored in various contexts in deep learning, such as provable adversarial robustness, estimating Wasserstein distance, stabilising training of GANs, and formulating invertible neural networks. Such works have focused on bounding the Lipschitz constant of fully connected or convolutional networks, composed of linear maps and pointwise non-linearities. In this paper, we investigate the Lipschitz constant of self-attention, a non-linear neural network module widely used in sequence modelling. We prove that the standard dot-product self-attention is not Lipschitz for unbounded input domain, and propose an alternative L2 self-attention that is Lipschitz. We derive an upper bound on the Lipschitz constant of L2 self-attention and provide empirical evidence for its asymptotic tightness. To demonstrate the practical relevance of our theoretical work, we formulate invertible self-attention and use it in a Transformer-based architecture for a character-level language modelling task.

Wed 21 July 7:30 - 7:35 PDT

Revealing the Structure of Deep Neural Networks via Convex Duality

Tolga Ergen · Mert Pilanci

We study regularized deep neural networks (DNNs) and introduce a convex analytic framework to characterize the structure of the hidden layers. We show that a set of optimal hidden layer weights for a norm regularized DNN training problem can be explicitly found as the extreme points of a convex set. For the special case of deep linear networks, we prove that each optimal weight matrix aligns with the previous layers via duality. More importantly, we apply the same characterization to deep ReLU networks with whitened data and prove the same weight alignment holds. As a corollary, we also prove that norm regularized deep ReLU networks yield spline interpolation for one-dimensional datasets which was previously known only for two-layer networks. Furthermore, we provide closed-form solutions for the optimal layer weights when data is rank-one or whitened. The same analysis also applies to architectures with batch normalization even for arbitrary data. Therefore, we obtain a complete explanation for a recent empirical observation termed Neural Collapse where class means collapse to the vertices of a simplex equiangular tight frame.

Wed 21 July 7:35 - 7:40 PDT

Representational aspects of depth and conditioning in normalizing flows

Frederic Koehler · Viraj Mehta · Andrej Risteski

Normalizing flows are among the most popular paradigms in generative modeling, especially for images, primarily because we can efficiently evaluate the likelihood of a data point. This is desirable both for evaluating the fit of a model, and for ease of training, as maximizing the likelihood can be done by gradient descent. However, training normalizing flows comes with difficulties as well: models which produce good samples typically need to be extremely deep -- which comes with accompanying vanishing/exploding gradient problems. A very related problem is that they are often poorly \emph{conditioned}: since they are parametrized as invertible maps from $\mathbb{R}^d \to \mathbb{R}^d$, and typical training data like images intuitively is lower-dimensional, the learned maps often have Jacobians that are close to being singular. In our paper, we tackle representational aspects around depth and conditioning of normalizing flows: both for general invertible architectures, and for a particular common architecture, affine couplings. We prove that $\Theta(1)$ affine coupling layers suffice to exactly represent a permutation or $1 \times 1$ convolution, as used in GLOW, showing that representationally the choice of partition is not a bottleneck for depth. We also show that shallow affine coupling networks are universal approximators in Wasserstein distance if ill-conditioning is allowed, and experimentally investigate related phenomena involving padding. Finally, we show a depth lower bound for general flow architectures with few neurons per layer and bounded Lipschitz constant.

Wed 21 July 7:40 - 7:45 PDT

Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning

Zixin Wen · Yuanzhi Li

We formally study how contrastive learning learns the feature representations for neural networks by investigating its feature learning process. We consider the case where our data are comprised of two types of features: the sparse features which we want to learn from, and the dense features we want to get rid of. Theoretically, we prove that contrastive learning using ReLU networks provably learns the desired features if proper augmentations are adopted. We present an underlying principle called feature decoupling to explain the effects of augmentations, where we theoretically characterize how augmentations can reduce the correlations of dense features between positive samples while keeping the correlations of sparse features intact, thereby forcing the neural networks to learn from the self-supervision of sparse features. Empirically, we verified that the feature decoupling principle matches the underlying mechanism of contrastive learning in practice.

Wed 21 July 7:45 - 7:50 PDT

The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning

Roberto Bondesan · Max Welling

In this work we develop a quantum field theory formalism for deep learning, where input signals are encoded in Gaussian states, a generalization of Gaussian processes which encode the agent's uncertainty about the input signal. We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles, dubbed ``Hintons''. On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing, and provides quantum deformations of neural networks that can be run efficiently on those devices. Finally, we discuss a semi-classical limit of the quantum deformed models which is amenable to classical simulation.

Wed 21 July 7:50 - 7:55 PDT