Moderator : Zoltan Szabo

Wed 21 Jul 6 a.m. PDT
— 7 a.m. PDT

Abstract:

Chat is not available.

Wed 21 July 6:00 - 6:20 PDT

(Oral)

Spencer Frei · Yuan Cao · Quanquan Gu

We analyze the properties of gradient descent on convex surrogates for the zero-one loss for the agnostic learning of halfspaces. We show that when a quantity we refer to as the \textit{soft margin} is well-behaved---a condition satisfied by log-concave isotropic distributions among others---minimizers of convex surrogates for the zero-one loss are approximate minimizers for the zero-one loss itself. As standard convex optimization arguments lead to efficient guarantees for minimizing convex surrogates of the zero-one loss, our methods allow for the first positive guarantees for the classification error of halfspaces learned by gradient descent using the binary cross-entropy or hinge loss in the presence of agnostic label noise.

Wed 21 July 6:20 - 6:25 PDT

(Spotlight)

Romain COUILLET · Florent Chatelain · Nicolas Le Bihan

The article introduces an elementary cost and storage reduction method for spectral clustering and principal component analysis. The method consists in randomly ``puncturing'' both the data matrix $X\in\mathbb{C}^{p\times n}$ (or $\mathbb{R}^{p\times n}$) and its corresponding kernel (Gram) matrix $K$ through Bernoulli masks: $S\in\{0,1\}^{p\times n}$ for $X$ and $B\in\{0,1\}^{n\times n}$ for $K$. The resulting ``two-way punctured'' kernel is thus given by $K=\frac1p[(X\odot S)^\H (X\odot S)]\odot B$. We demonstrate that, for $X$ composed of independent columns drawn from a Gaussian mixture model, as $n,p\to\infty$ with $p/n\to c_0\in(0,\infty)$, the spectral behavior of $K$ -- its limiting eigenvalue distribution, as well as its isolated eigenvalues and eigenvectors -- is fully tractable and exhibits a series of counter-intuitive phenomena. We notably prove, and empirically confirm on various image databases, that it is possible to drastically puncture the data, thereby providing possibly huge computational and storage gains, for a virtually constant (clustering or PCA) performance. This preliminary study opens as such the path towards rethinking, from a large dimensional standpoint, computational and storage costs in elementary machine learning models.

Wed 21 July 6:25 - 6:30 PDT

(Spotlight)

Abi Komanduru · Jean Honorio

Inverse reinforcement learning (IRL) is the task of finding a reward function that generates a desired optimal policy for a given Markov Decision Process (MDP). This paper develops an information-theoretic lower bound for the sample complexity of the finite state, finite action IRL problem. A geometric construction of $\beta$-strict separable IRL problems using spherical codes is considered. Properties of the ensemble size as well as the Kullback-Leibler divergence between the generated trajectories are derived. The resulting ensemble is then used along with Fano's inequality to derive a sample complexity lower bound of $O(n \log n)$, where $n$ is the number of states in the MDP.

Wed 21 July 6:30 - 6:35 PDT

(Spotlight)

Vincent Divol · Theo Lacombe

Persistence diagrams (PDs) are the most common descriptors used to encode the topology of structured data appearing in challenging learning tasks;~think e.g.~of graphs, time series or point clouds sampled close to a manifold. Given random objects and the corresponding distribution of PDs, one may want to build a statistical summary---such as a mean---of these random PDs, which is however not a trivial task as the natural geometry of the space of PDs is not linear. In this article, we study two such summaries, the Expected Persistence Diagram (EPD), and its quantization. The EPD is a measure supported on $\mathbb{R}^2$, which may be approximated by its empirical counterpart. We prove that this estimator is optimal from a minimax standpoint on a large class of models with a parametric rate of convergence. The empirical EPD is simple and efficient to compute, but possibly has a very large support, hindering its use in practice. To overcome this issue, we propose an algorithm to compute a quantization of the empirical EPD, a measure with small support which is shown to approximate with near-optimal rates a quantization of the theoretical EPD.

Wed 21 July 6:35 - 6:40 PDT

(Spotlight)

Tobias Freidling · Benjamin Poignard · Héctor Climente-González · Makoto Yamada

Detecting influential features in non-linear and/or high-dimensional data is a challenging and increasingly important task in machine learning. Variable selection methods have thus been gaining much attention as well as post-selection inference. Indeed, the selected features can be significantly flawed when the selection procedure is not accounted for. We propose a selective inference procedure using the so-called model-free "HSIC-Lasso" based on the framework of truncated Gaussians combined with the polyhedral lemma. We then develop an algorithm, which allows for low computational costs and provides a selection of the regularisation parameter. The performance of our method is illustrated by both artificial and real-world data based experiments, which emphasise a tight control of the type-I error, even for small sample sizes.

Wed 21 July 6:40 - 6:45 PDT

(Spotlight)

Difan Zou · Spencer Frei · Quanquan Gu

We analyze the properties of adversarial training for learning adversarially robust halfspaces in the presence of agnostic label noise. Denoting $\mathsf{OPT}_{p,r}$ as the best classification error achieved by a halfspace that is robust to perturbations of $\ell^{p}$ balls of radius $r$, we show that adversarial training on the standard binary cross-entropy loss yields adversarially robust halfspaces up to classification error $\tilde O(\sqrt{\mathsf{OPT}_{2,r}})$ for $p=2$, and $\tilde O(d^{1/4} \sqrt{\mathsf{OPT}_{\infty, r}})$ when $p=\infty$. Our results hold for distributions satisfying anti-concentration properties enjoyed by log-concave isotropic distributions among others. We additionally show that if one instead uses a non-convex sigmoidal loss, adversarial training yields halfspaces with an improved robust classification error of $O(\mathsf{OPT}_{2,r})$ for $p=2$, and $O(d^{1/4} \mathsf{OPT}_{\infty, r})$ when $p=\infty$. To the best of our knowledge, this is the first work showing that adversarial training provably yields robust classifiers in the presence of noise.

Wed 21 July 6:45 - 6:50 PDT

(Spotlight)

Chirag Gupta · Aaditya Ramdas

We prove calibration guarantees for the popular histogram binning (also called uniform-mass binning) method of Zadrozny and Elkan (2001). Histogram binning has displayed strong practical performance, but theoretical guarantees have only been shown for sample split versions that avoid 'double dipping' the data. We demonstrate that the statistical cost of sample splitting is practically significant on a credit default dataset. We then prove calibration guarantees for the original method that double dips the data, using a certain Markov property of order statistics. Based on our results, we make practical recommendations for choosing the number of bins in histogram binning. In our illustrative simulations, we propose a new tool for assessing calibration---validity plots---which provide more information than an ECE estimate.