Moderator : Chi Jin

Wed 21 Jul 6 a.m. PDT
— 7 a.m. PDT

Abstract:

Chat is not available.

Wed 21 July 6:00 - 6:20 PDT

(Oral)

Shuang Qiu · Xiaohan Wei · Jieping Ye · Zhaoran Wang · Zhuoran Yang

While single-agent policy optimization in a fixed environment has attracted a lot of research attention recently in the reinforcement learning community, much less is known theoretically when there are multiple agents playing in a potentially competitive environment. We take steps forward by proposing and analyzing new fictitious play policy optimization algorithms for two-player zero-sum Markov games with structured but unknown transitions. We consider two classes of transition structures: factored independent transition and single-controller transition. For both scenarios, we prove tight $\widetilde{\mathcal{O}}(\sqrt{T})$ regret bounds after $T$ steps in a two-agent competitive game scenario. The regret of each player is measured against a potentially adversarial opponent who can choose a single best policy in hindsight after observing the full policy sequence. Our algorithms feature a combination of Upper Confidence Bound (UCB)-type optimism and fictitious play under the scope of simultaneous policy optimization in a non-stationary environment. When both players adopt the proposed algorithms, their overall optimality gap is $\widetilde{\mathcal{O}}(\sqrt{T})$.

Wed 21 July 6:20 - 6:25 PDT

(Spotlight)

Aleksei Petrenko · Erik Wijmans · Brennan Shacklett · Vladlen Koltun

We present Megaverse, a new 3D simulation platform for reinforcement learning and embodied AI research. The efficient design of our engine enables physics-based simulation with high-dimensional egocentric observations at more than 1,000,000 actions per second on a single 8-GPU node. Megaverse is up to 70x faster than DeepMind Lab in fully-shaded 3D scenes with interactive objects. We achieve this high simulation performance by leveraging batched simulation, thereby taking full advantage of the massive parallelism of modern GPUs. We use Megaverse to build a new benchmark that consists of several single-agent and multi-agent tasks covering a variety of cognitive challenges. We evaluate model-free RL on this benchmark to provide baselines and facilitate future research.

Wed 21 July 6:25 - 6:30 PDT

(Spotlight)

Filippos Christianos · Georgios Papoudakis · Muhammad Arrasy Rahman · Stefano V. Albrecht

Sharing parameters in multi-agent deep reinforcement learning has played an essential role in allowing algorithms to scale to a large number of agents. Parameter sharing between agents significantly decreases the number of trainable parameters, shortening training times to tractable levels, and has been linked to more efficient learning. However, having all agents share the same parameters can also have a detrimental effect on learning. We demonstrate the impact of parameter sharing methods on training speed and converged returns, establishing that when applied indiscriminately, their effectiveness is highly dependent on the environment. We propose a novel method to automatically identify agents which may benefit from sharing parameters by partitioning them based on their abilities and goals. Our approach combines the increased sample efficiency of parameter sharing with the representational capacity of multiple independent networks to reduce training time and increase final returns.

Wed 21 July 6:30 - 6:35 PDT

(Spotlight)

Muhammad Arrasy Rahman · Niklas Hopner · Filippos Christianos · Stefano V. Albrecht

Ad hoc teamwork is the challenging problem of designing an autonomous agent which can adapt quickly to collaborate with teammates without prior coordination mechanisms, including joint training. Prior work in this area has focused on closed teams in which the number of agents is fixed. In this work, we consider open teams by allowing agents with different fixed policies to enter and leave the environment without prior notification. Our solution builds on graph neural networks to learn agent models and joint-action value models under varying team compositions. We contribute a novel action-value computation that integrates the agent model and joint-action value model to produce action-value estimates. We empirically demonstrate that our approach successfully models the effects other agents have on the learner, leading to policies that robustly adapt to dynamic team compositions and significantly outperform several alternative methods.

Wed 21 July 6:35 - 6:40 PDT

(Spotlight)

Hengyuan Hu · Adam Lerer · Brandon Cui · Luis Pineda · Noam Brown · Jakob Foerster

The standard problem setting in Dec-POMDPs is self-play, where the goal is to find a set of policies that play optimally together. Policies learned through self-play may adopt arbitrary conventions and implicitly rely on multi-step reasoning based on fragile assumptions about other agents' actions and thus fail when paired with humans or independently trained agents at test time. To address this, we present off-belief learning (OBL). At each timestep OBL agents follow a policy $\pi_1$ that is optimized assuming past actions were taken by a given, fixed policy ($\pi_0$), but assuming that future actions will be taken by $\pi_1$. When $\pi_0$ is uniform random, OBL converges to an optimal policy that does not rely on inferences based on other agents' behavior (an optimal grounded policy). OBL can be iterated in a hierarchy, where the optimal policy from one level becomes the input to the next, thereby introducing multi-level cognitive reasoning in a controlled manner. Unlike existing approaches, which may converge to any equilibrium policy, OBL converges to a unique policy, making it suitable for zero-shot coordination (ZSC). OBL can be scaled to high-dimensional settings with a fictitious transition mechanism and shows strong performance in both a toy-setting and the benchmark human-AI & ZSC problem Hanabi.

Wed 21 July 6:40 - 6:45 PDT

(Spotlight)

Tianhao Wu · Yunchang Yang · Simon Du · Liwei Wang

We study reinforcement learning (RL) in episodic tabular MDPs with adversarial corruptions, where some episodes can be adversarially corrupted. When the total number of corrupted episodes is known, we propose an algorithm, Corruption Robust Monotonic Value Propagation (\textsf{CR-MVP}), which achieves a regret bound of $\tilde{O}\left(\left(\sqrt{SAK}+S^2A+CSA)\right)\polylog(H)\right)$, where $S$ is the number of states, $A$ is the number of actions, $H$ is the planning horizon, $K$ is the number of episodes, and $C$ is the corruption level. We also provide a corresponding lower bound, which indicates that our upper bound is tight. Finally, as an application, we study RL with rich observations in the block MDP model. We provide the first algorithm that achieves a $\sqrt{K}$-type regret in this setting and is computationally efficient.

Wed 21 July 6:45 - 6:50 PDT

(Spotlight)

Sebastian Curi · Ilija Bogunovic · Andreas Krause

In real-world tasks, reinforcement learning (RL) agents frequently encounter situations that are not present during training time. To ensure reliable performance, the RL agents need to exhibit robustness to such worst-case situations. The robust-RL framework addresses this challenge via a minimax optimization between an agent and an adversary. Previous robust RL algorithms are either sample inefficient, lack robustness guarantees, or do not scale to large problems. We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem while attaining near-optimal sample complexity guarantees. RH-UCRL is a model-based reinforcement learning (MBRL) algorithm that effectively distinguishes between epistemic and aleatoric uncertainty and efficiently explores both the agent and the adversary decision spaces during policy learning. We scale RH-UCRL to complex tasks via neural networks ensemble models as well as neural network policies. Experimentally we demonstrate that RH-UCRL outperforms other robust deep RL algorithms in a variety of adversarial environments.