Skip to yearly menu bar Skip to main content


Session

Reinforcement Learning 12

Moderator: Pulkit Agrawal

Abstract:

Chat is not available.

Wed 21 July 6:00 - 6:20 PDT

Oral
Model-based Reinforcement Learning for Continuous Control with Posterior Sampling

Ying Fan · Yifei Ming

Balancing exploration and exploitation is crucial in reinforcement learning (RL). In this paper, we study model-based posterior sampling for reinforcement learning (PSRL) in continuous state-action spaces theoretically and empirically. First, we show the first regret bound of PSRL in continuous spaces which is polynomial in the episode length to the best of our knowledge. With the assumption that reward and transition functions can be modeled by Bayesian linear regression, we develop a regret bound of $\tilde{O}(H^{3/2}d\sqrt{T})$, where $H$ is the episode length, $d$ is the dimension of the state-action space, and $T$ indicates the total time steps. This result matches the best-known regret bound of non-PSRL methods in linear MDPs. Our bound can be extended to nonlinear cases as well with feature embedding: using linear kernels on the feature representation $\phi$, the regret bound becomes $\tilde{O}(H^{3/2}d_{\phi}\sqrt{T})$, where $d_\phi$ is the dimension of the representation space. Moreover, we present MPC-PSRL, a model-based posterior sampling algorithm with model predictive control for action selection. To capture the uncertainty in models, we use Bayesian linear regression on the penultimate layer (the feature representation layer $\phi$) of neural networks. Empirical results show that our algorithm achieves the state-of-the-art sample efficiency in benchmark continuous control tasks compared to prior model-based algorithms, and matches the asymptotic performance of model-free algorithms.

Wed 21 July 6:20 - 6:25 PDT

Spotlight
Principled Exploration via Optimistic Bootstrapping and Backward Induction

Chenjia Bai · Lingxiao Wang · Lei Han · Jianye Hao · Animesh Garg · Peng Liu · Zhaoran Wang

One principled approach for provably efficient exploration is incorporating the upper confidence bound (UCB) into the value function as a bonus. However, UCB is specified to deal with linear and tabular settings and is incompatible with Deep Reinforcement Learning (DRL). In this paper, we propose a principled exploration method for DRL through Optimistic Bootstrapping and Backward Induction (OB2I). OB2I constructs a general-purpose UCB-bonus through non-parametric bootstrap in DRL. The UCB-bonus estimates the epistemic uncertainty of state-action pairs for optimistic exploration. We build theoretical connections between the proposed UCB-bonus and the LSVI-UCB in linear setting. We propagate future uncertainty in a time-consistent manner through episodic backward update, which exploits the theoretical advantage and empirically improves the sample-efficiency. Our experiments in MNIST maze and Atari suit suggest that OB2I outperforms several state-of-the-art exploration approaches.

Wed 21 July 6:25 - 6:30 PDT

Spotlight
Ensemble Bootstrapping for Q-Learning

Oren Peer · Chen Tessler · Nadav Merlis · Ron Meir

Q-learning (QL), a common reinforcement learning algorithm, suffers from over-estimation bias due to the maximization term in the optimal Bellman operator. This bias may lead to sub-optimal behavior. Double-Q-learning tackles this issue by utilizing two estimators, yet results in an under-estimation bias. Similar to over-estimation in Q-learning, in certain scenarios, the under-estimation bias may degrade performance. In this work, we introduce a new bias-reduced algorithm called Ensemble Bootstrapped Q-Learning (EBQL), a natural extension of Double-Q-learning to ensembles. We analyze our method both theoretically and empirically. Theoretically, we prove that EBQL-like updates yield lower MSE when estimating the maximal mean of a set of independent random variables. Empirically, we show that there exist domains where both over and under-estimation result in sub-optimal performance. Finally, We demonstrate the superior performance of a deep RL variant of EBQL over other deep QL algorithms for a suite of ATARI games.

Wed 21 July 6:30 - 6:35 PDT

Spotlight
Finite-Sample Analysis of Off-Policy Natural Actor-Critic Algorithm

sajad khodadadian · Zaiwei Chen · Siva Maguluri

In this paper, we provide finite-sample convergence guarantees for an off-policy variant of the natural actor-critic (NAC) algorithm based on Importance Sampling. In particular, we show that the algorithm converges to a global optimal policy with a sample complexity of $\mathcal{O}(\epsilon^{-3}\log^2(1/\epsilon))$ under an appropriate choice of stepsizes. In order to overcome the issue of large variance due to Importance Sampling, we propose the $Q$-trace algorithm for the critic, which is inspired by the V-trace algorithm (Espeholt et al., 2018). This enables us to explicitly control the bias and variance, and characterize the trade-off between them. As an advantage of off-policy sampling, a major feature of our result is that we do not need any additional assumptions, beyond the ergodicity of the Markov chain induced by the behavior policy.

Wed 21 July 6:35 - 6:40 PDT

Spotlight
A Regret Minimization Approach to Iterative Learning Control

Naman Agarwal · Elad Hazan · Anirudha Majumdar · Karan Singh

We consider the setting of iterative learning control, or model-based policy learning in the presence of uncertain, time-varying dynamics. In this setting, we propose a new performance metric, planning regret, which replaces the standard stochastic uncertainty assumptions with worst case regret. Based on recent advances in non-stochastic control, we design a new iterative algorithm for minimizing planning regret that is more robust to model mismatch and uncertainty. We provide theoretical and empirical evidence that the proposed algorithm outperforms existing methods on several benchmarks.

Wed 21 July 6:40 - 6:45 PDT

Spotlight
TempoRL: Learning When to Act

AndrĂ© Biedenkapp · Raghu Rajan · Frank Hutter · Marius Lindauer

Reinforcement learning is a powerful approach to learn behaviour through interactions with an environment. However, behaviours are usually learned in a purely reactive fashion, where an appropriate action is selected based on an observation. In this form, it is challenging to learn when it is necessary to execute new decisions. This makes learning inefficient especially in environments that need various degrees of fine and coarse control. To address this, we propose a proactive setting in which the agent not only selects an action in a state but also for how long to commit to that action. Our TempoRL approach introduces skip connections between states and learns a skip-policy for repeating the same action along these skips. We demonstrate the effectiveness of TempoRL on a variety of traditional and deep RL environments, showing that our approach is capable of learning successful policies up to an order of magnitude faster than vanilla Q-learning.

Wed 21 July 6:45 - 6:50 PDT

Spotlight
State Relevance for Off-Policy Evaluation

Simon Shen · Jason Yecheng Ma · Omer Gottesman · Finale Doshi-Velez

Importance sampling-based estimators for off-policy evaluation (OPE) are valued for their simplicity, unbiasedness, and reliance on relatively few assumptions. However, the variance of these estimators is often high, especially when trajectories are of different lengths. In this work, we introduce Omitting-States-Irrelevant-to-Return Importance Sampling (OSIRIS), an estimator which reduces variance by strategically omitting likelihood ratios associated with certain states. We formalize the conditions under which OSIRIS is unbiased and has lower variance than ordinary importance sampling, and we demonstrate these properties empirically.

Wed 21 July 6:50 - 6:55 PDT

Q&A
Q&A