Skip to yearly menu bar Skip to main content


Session

AutoML

Moderator: Cho-Jui Hsieh

Abstract:
Chat is not available.

Tue 20 July 18:00 - 18:05 PDT

Spotlight
iDARTS: Differentiable Architecture Search with Stochastic Implicit Gradients

Miao Zhang · Steven Su · Shirui Pan · Xiaojun Chang · Ehsan Abbasnejad · Reza Haffari

Differentiable ARchiTecture Search(DARTS) has recently become the mainstream in the neural architecture search (NAS) due to its efficiency and simplicity. With a gradient-based bi-level optimization, DARTS alternately optimizes the inner model weights and the outer architecture parameter in a weight-sharing supernet. A key challenge to the scalability and quality of the learned architectures is the need for differentiating through the inner-loop optimisation. While much has been discussed about several potentially fatal factors in DARTS, the architecture gradient, a.k.a. hypergradient, has received less attention. In this paper, we tackle the hypergradient computation in DARTS based on the implicit function theorem, making it only depends on the obtained solution to the inner-loop optimization and agnostic to the optimization path. To further reduce the computational requirements, we formulate a stochastic hypergradient approximation for differentiable NAS, and theoretically show that the architecture optimization with the proposed method is expected to converge to a stationary point. Comprehensive experiments on two NAS benchmark search spaces and the common NAS search space verify the effectiveness of our proposed method. It leads to architectures outperforming, with large margins, those learned by the baseline methods.

Tue 20 July 18:05 - 18:10 PDT

Spotlight
Accurate Post Training Quantization With Small Calibration Sets

Itay Hubara · Yury Nahshan · Yair Hanani · Ron Banner · Daniel Soudry

Lately, post-training quantization methods have gained considerable attention, as they are simple to use, and require only a small unlabeled calibration set. This small dataset cannot be used to fine-tune the model without significant over-fitting. Instead, these methods only use the calibration set to set the activations' dynamic ranges. However, such methods always resulted in significant accuracy degradation, when used below 8-bits (except on small datasets). Here we aim to break the 8-bit barrier. To this end, we minimize the quantization errors of each layer or block separately by optimizing its parameters over the calibration set. We empirically demonstrate that this approach is: (1) much less susceptible to over-fitting than the standard fine-tuning approaches, and can be used even on a very small calibration set; and (2) more powerful than previous methods, which only set the activations' dynamic ranges. We suggest two flavors for our method, parallel and sequential aim for a fixed and flexible bit-width allocation. For the latter, we demonstrate how to optimally allocate the bit-widths for each layer, while constraining accuracy degradation or model compression by proposing a novel integer programming formulation. Finally, we suggest model global statistics tuning, to correct biases introduced during quantization. Together, these methods yield state-of-the-art results for both vision and text models. For instance, on ResNet50, we obtain less than 1\% accuracy degradation --- with 4-bit weights and activations in all layers, but first and last. The suggested methods are two orders of magnitude faster than the traditional Quantize Aware Training approach used for lower than 8-bit quantization. We open-sourced our code \textit{https://github.com/papers-submission/CalibTIP}.

Tue 20 July 18:10 - 18:15 PDT

Spotlight
Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search

Vu Nguyen · Tam Le · Makoto Yamada · Michael A Osborne

Neural architecture search (NAS) automates the design of deep neural networks. One of the main challenges in searching complex and non-continuous architectures is to compare the similarity of networks that the conventional Euclidean metric may fail to capture. Optimal transport (OT) is resilient to such complex structure by considering the minimal cost for transporting a network into another. However, the OT is generally not negative definite which may limit its ability to build the positive-definite kernels required in many kernel-dependent frameworks. Building upon tree-Wasserstein (TW), which is a negative definite variant of OT, we develop a novel discrepancy for neural architectures, and demonstrate it within a Gaussian process surrogate model for the sequential NAS settings. Furthermore, we derive a novel parallel NAS, using quality k-determinantal point process on the GP posterior, to select diverse and high-performing architectures from a discrete set of candidates. Empirically, we demonstrate that our TW-based approaches outperform other baselines in both sequential and parallel NAS.

Tue 20 July 18:15 - 18:35 PDT

Oral
Few-Shot Neural Architecture Search

Yiyang Zhao · Linnan Wang · Yuandong Tian · Rodrigo Fonseca · Tian Guo

Efficient evaluation of a network architecture drawn from a large search space remains a key challenge in Neural Architecture Search (NAS). Vanilla NAS evaluates each architecture by training from scratch, which gives the true performance but is extremely time-consuming. Recently, one-shot NAS substantially reduces the computation cost by training only one supernetwork, a.k.a. supernet, to approximate the performance of every architecture in the search space via weight-sharing. However, the performance estimation can be very inaccurate due to the co-adaption among operations. In this paper, we propose few-shot NAS that uses multiple supernetworks, called sub-supernet, each covering different regions of the search space to alleviate the undesired co-adaption. Compared to one-shot NAS, few-shot NAS improves the accuracy of architecture evaluation with a small increase of evaluation cost. With only up to 7 sub-supernets, few-shot NAS establishes new SoTAs: on ImageNet, it finds models that reach 80.5% top-1 accuracy at 600 MB FLOPS and 77.5% top-1 accuracy at 238 MFLOPS; on CIFAR10, it reaches 98.72% top-1 accuracy without using extra data or transfer learning. In Auto-GAN, few-shot NAS outperforms the previously published results by up to 20%. Extensive experiments show that few-shot NAS significantly improves various one-shot methods, including 4 gradient-based and 6 search-based methods on 3 different tasks in NasBench-201 and NasBench1-shot-1.

Tue 20 July 18:35 - 18:40 PDT

Spotlight
AutoAttend: Automated Attention Representation Search

Chaoyu Guan · Xin Wang · Wenwu Zhu

Self-attention mechanisms have been widely adopted in many machine learning areas, including Natural Language Processing (NLP) and Graph Representation Learning (GRL), etc. However, existing works heavily rely on hand-crafted design to obtain customized attention mechanisms. In this paper, we automate Key, Query and Value representation design, which is one of the most important steps to obtain effective self-attentions. We propose an automated self-attention representation model, AutoAttend, which can automatically search powerful attention representations for downstream tasks leveraging Neural Architecture Search (NAS). In particular, we design a tailored search space for attention representation automation, which is flexible to produce effective attention representation designs. Based on the design prior obtained from attention representations in previous works, we further regularize our search space to reduce the space complexity without the loss of expressivity. Moreover, we propose a novel context-aware parameter sharing mechanism considering special characteristics of each sub-architecture to provide more accurate architecture estimations when conducting parameter sharing in our tailored search space. Experiments show the superiority of our proposed AutoAttend model over previous state-of-the-arts on eight text classification tasks in NLP and four node classification tasks in GRL.

Tue 20 July 18:40 - 18:45 PDT

Spotlight
Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces

Xingchen Wan · Vu Nguyen · Huong Ha · Binxin Ru · Cong Lu · Michael A Osborne

High-dimensional black-box optimisation remains an important yet notoriously challenging problem. Despite the success of Bayesian optimisation methods on continuous domains, domains that are categorical, or that mix continuous and categorical variables, remain challenging. We propose a novel solution---we combine local optimisation with a tailored kernel design, effectively handling high-dimensional categorical and mixed search spaces, whilst retaining sample efficiency. We further derive convergence guarantee for the proposed approach. Finally, we demonstrate empirically that our method outperforms the current baselines on a variety of synthetic and real-world tasks in terms of performance, computational costs, or both.

Tue 20 July 18:45 - 18:50 PDT

Spotlight
Auto-NBA: Efficient and Effective Search Over the Joint Space of Networks, Bitwidths, and Accelerators

Yonggan Fu · Yongan Zhang · Yang Zhang · David Cox · Yingyan Lin

While maximizing deep neural networks' (DNNs') acceleration efficiency requires a joint search/design of three different yet highly coupled aspects, including the networks, bitwidths, and accelerators, the challenges associated with such a joint search have not yet been fully understood and addressed. The key challenges include (1) the dilemma of whether to explode the memory consumption due to the huge joint space or achieve sub-optimal designs, (2) the discrete nature of the accelerator design space that is coupled yet different from that of the networks and bitwidths, and (3) the chicken and egg problem associated with network-accelerator co-search, i.e., co-search requires operation-wise hardware cost, which is lacking during search as the optimal accelerator depending on the whole network is still unknown during search. To tackle these daunting challenges towards optimal and fast development of DNN accelerators, we propose a framework dubbed Auto-NBA to enable jointly searching for the Networks, Bitwidths, and Accelerators, by efficiently localizing the optimal design within the huge joint design space for each target dataset and acceleration specification. Our Auto-NBA integrates a heterogeneous sampling strategy to achieve unbiased search with constant memory consumption, and a novel joint-search pipeline equipped with a generic differentiable accelerator search engine. Extensive experiments and ablation studies validate that both Auto-NBA generated networks and accelerators consistently outperform state-of-the-art designs (including co-search/exploration techniques, hardware-aware NAS methods, and DNN accelerators), in terms of search time, task accuracy, and accelerator efficiency. Our codes are available at: https://github.com/RICE-EIC/Auto-NBA.

Tue 20 July 18:50 - 18:55 PDT

Q&A
Q&A