Skip to yearly menu bar Skip to main content


Reinforcement Learning 4

Moderator: Ian Osband


Chat is not available.

Tue 20 July 17:00 - 17:20 PDT

Robust Asymmetric Learning in POMDPs

Andrew Warrington · Jonathan Lavington · Adam Scibior · Mark Schmidt · Frank Wood

Policies for partially observed Markov decision processes can be efficiently learned by imitating expert policies generated using asymmetric information. Unfortunately, existing approaches for this kind of imitation learning have a serious flaw: the expert does not know what the trainee cannot see, and as a result may encourage actions that are sub-optimal or unsafe under partial information. To address this issue, we derive an update which, when applied iteratively to an expert, maximizes the expected reward of the trainee's policy. Using this update, we construct a computationally efficient algorithm, adaptive asymmetric DAgger (A2D), that jointly trains the expert and trainee policies. We then show that A2D allows the trainee to safely imitate the modified expert, and outperforms policies learned either by imitating a fixed expert or through direct reinforcement learning.

Tue 20 July 17:20 - 17:25 PDT

Differentiable Spatial Planning using Transformers

Devendra Singh Chaplot · Deepak Pathak · Jitendra Malik

We consider the problem of spatial path planning. In contrast to the classical solutions which optimize a new plan from scratch and assume access to the full map with ground truth obstacle locations, we learn a planner from the data in a differentiable manner that allows us to leverage statistical regularities from past data. We propose Spatial Planning Transformers (SPT), which given an obstacle map learns to generate actions by planning over long-range spatial dependencies, unlike prior data-driven planners that propagate information locally via convolutional structure in an iterative manner. In the setting where the ground truth map is not known to the agent, we leverage pre-trained SPTs in an end-to-end framework that has the structure of mapper and planner built into it which allows seamless generalization to out-of-distribution maps and goals. SPTs outperform prior state-of-the-art differentiable planners across all the setups for both manipulation and navigation tasks, leading to an absolute improvement of 7-19\%.

Tue 20 July 17:25 - 17:30 PDT

Convex Regularization in Monte-Carlo Tree Search

Tuan Q Dam · Carlo D'Eramo · Jan Peters · Joni Pajarinen

Monte-Carlo planning and Reinforcement Learning (RL) are essential to sequential decision making. The recent AlphaGo and AlphaZero algorithms have shown how to successfully combine these two paradigms to solve large-scale sequential decision problems. These methodologies exploit a variant of the well-known UCT algorithm to trade off the exploitation of good actions and the exploration of unvisited states, but their empirical success comes at the cost of poor sample-efficiency and high computation time. In this paper, we overcome these limitations by introducing the use of convex regularization in Monte-Carlo Tree Search (MCTS) to drive exploration efficiently and to improve policy updates. First, we introduce a unifying theory on the use of generic convex regularizers in MCTS, deriving the first regret analysis of regularized MCTS and showing that it guarantees an exponential convergence rate. Second, we exploit our theoretical framework to introduce novel regularized backup operators for MCTS, based on the relative entropy of the policy update and, more importantly, on the Tsallis entropy of the policy, for which we prove superior theoretical guarantees. We empirically verify the consequence of our theoretical results on a toy problem. Finally, we show how our framework can easily be incorporated in AlphaGo and we empirically show the superiority of convex regularization, w.r.t. representative baselines, on well-known RL problems across several Atari games.

Tue 20 July 17:30 - 17:35 PDT

On-Policy Deep Reinforcement Learning for the Average-Reward Criterion

Yiming Zhang · Keith Ross

We develop theory and algorithms for average-reward on-policy Reinforcement Learning (RL). We first consider bounding the difference of the long-term average reward for two policies. We show that previous work based on the discounted return (Schulman et al. 2015, Achiam et al. 2017) results in a non-meaningful lower bound in the average reward setting. By addressing the average-reward criterion directly, we then derive a novel bound which depends on the average divergence between the policies and on Kemeny's constant. Based on this bound, we develop an iterative procedure which produces a sequence of monotonically improved policies for the average reward criterion. This iterative procedure can then be combined with classic Deep Reinforcement Learning (DRL) methods, resulting in practical DRL algorithms that target the long-run average reward criterion. In particular, we demonstrate that Average-Reward TRPO (ATRPO), which adapts the on-policy TRPO algorithm to the average-reward criterion, significantly outperforms TRPO in the most challenging MuJuCo environments.

Tue 20 July 17:35 - 17:40 PDT

Multi-Task Reinforcement Learning with Context-based Representations

Shagun Sodhani · Amy Zhang · Joelle Pineau

Tue 20 July 17:40 - 17:45 PDT

High Confidence Generalization for Reinforcement Learning

James Kostas · Yash Chandak · Scott Jordan · Georgios Theocharous · Philip Thomas

We present several classes of reinforcement learning algorithms that safely generalize to Markov decision processes (MDPs) not seen during training. Specifically, we study the setting in which some set of MDPs is accessible for training. The goal is to generalize safely to MDPs that are sampled from the same distribution, but which may not be in the set accessible for training. For various definitions of safety, our algorithms give probabilistic guarantees that agents can safely generalize to MDPs that are sampled from the same distribution but are not necessarily in the training set. These algorithms are a type of Seldonian algorithm (Thomas et al., 2019), which is a class of machine learning algorithms that return models with probabilistic safety guarantees for user-specified definitions of safety.

Tue 20 July 17:45 - 17:50 PDT

Locally Persistent Exploration in Continuous Control Tasks with Sparse Rewards

Susan Amin · Maziar Gomrokchi · Hossein Aboutalebi · Harsh Satija · Doina Precup

A major challenge in reinforcement learning is the design of exploration strategies, especially for environments with sparse reward structures and continuous state and action spaces. Intuitively, if the reinforcement signal is very scarce, the agent should rely on some form of short-term memory in order to cover its environment efficiently. We propose a new exploration method, based on two intuitions: (1) the choice of the next exploratory action should depend not only on the (Markovian) state of the environment, but also on the agent's trajectory so far, and (2) the agent should utilize a measure of spread in the state space to avoid getting stuck in a small region. Our method leverages concepts often used in statistical physics to provide explanations for the behavior of simplified (polymer) chains in order to generate persistent (locally self-avoiding) trajectories in state space. We discuss the theoretical properties of locally self-avoiding walks and their ability to provide a kind of short-term memory through a decaying temporal correlation within the trajectory. We provide empirical evaluations of our approach in a simulated 2D navigation task, as well as higher-dimensional MuJoCo continuous control locomotion tasks with sparse rewards.

Tue 20 July 17:50 - 17:55 PDT