Skip to yearly menu bar Skip to main content


Session

Deep Learning 2

Moderator: Been Kim

Abstract:

Chat is not available.

Tue 20 July 17:00 - 17:20 PDT

Oral
Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Ziheng Jiang · Chiyuan Zhang · Kunal Talwar · Michael Mozer

Humans are accustomed to environments that contain both regularities and exceptions. For example, at most gas stations, one pays prior to pumping, but the occasional rural station does not accept payment in advance. Likewise, deep neural networks can generalize across instances that share common patterns or structures, yet have the capacity to memorize rare or irregular forms. We analyze how individual instances are treated by a model via a consistency score. The score characterizes the expected accuracy for a held-out instance given training sets of varying size sampled from the data distribution. We obtain empirical estimates of this score for individual instances in multiple data sets, and we show that the score identifies out-of-distribution and mislabeled examples at one end of the continuum and strongly regular examples at the other end. We identify computationally inexpensive proxies to the consistency score using statistics collected during training. We apply the score toward understanding the dynamics of representation learning and to filter outliers during training.

Tue 20 July 17:20 - 17:25 PDT

Spotlight
Stabilizing Equilibrium Models by Jacobian Regularization

Shaojie Bai · Vladlen Koltun · Zico Kolter

Deep equilibrium networks (DEQs) are a new class of models that eschews traditional depth in favor of finding the fixed point of a single non-linear layer. These models have been shown to achieve performance competitive with the state-of-the-art deep networks while using significantly less memory. Yet they are also slower, brittle to architectural choices, and introduce potential instability to the model. In this paper, we propose a regularization scheme for DEQ models that explicitly regularizes the Jacobian of the fixed-point update equations to stabilize the learning of equilibrium models. We show that this regularization adds only minimal computational cost, significantly stabilizes the fixed-point convergence in both forward and backward passes, and scales well to high-dimensional, realistic domains (e.g., WikiText-103 language modeling and ImageNet classification). Using this method, we demonstrate, for the first time, an implicit-depth model that runs with approximately the same speed and level of performance as popular conventional deep networks such as ResNet-101, while still maintaining the constant memory footprint and architectural simplicity of DEQs. Code is available https://github.com/locuslab/deq.

Tue 20 July 17:25 - 17:30 PDT

Spotlight
On the Predictability of Pruning Across Scales

Jonathan Rosenfeld · Jonathan Frankle · Michael Carbin · Nir Shavit

We show that the error of iteratively magnitude-pruned networks empirically follows a scaling law with interpretable coefficients that depend on the architecture and task. We functionally approximate the error of the pruned networks, showing it is predictable in terms of an invariant tying width, depth, and pruning level, such that networks of vastly different pruned densities are interchangeable. We demonstrate the accuracy of this approximation over orders of magnitude in depth, width, dataset size, and density. We show that the functional form holds (generalizes) for large scale data (e.g., ImageNet) and architectures (e.g., ResNets). As neural networks become ever larger and costlier to train, our findings suggest a framework for reasoning conceptually and analytically about a standard method for unstructured pruning.

Tue 20 July 17:30 - 17:35 PDT

Spotlight
Lottery Ticket Preserves Weight Correlation: Is It Desirable or Not?

Ning Liu · Geng Yuan · Zhengping Che · Xuan Shen · Xiaolong Ma · Qing Jin · Jian Ren · Jian Tang · Sijia Liu · Yanzhi Wang

In deep model compression, the recent finding "Lottery Ticket Hypothesis" (LTH) pointed out that there could exist a winning ticket (i.e., a properly pruned sub-network together with original weight initialization) that can achieve competitive performance than the original dense network. However, it is not easy to observe such winning property in many scenarios, where for example, a relatively large learning rate is used even if it benefits training the original dense model. In this work, we investigate the underlying condition and rationale behind the winning property, and find that the underlying reason is largely attributed to the correlation between initialized weights and final-trained weights when the learning rate is not sufficiently large. Thus, the existence of winning property is correlated with an insufficient DNN pretraining, and is unlikely to occur for a well-trained DNN. To overcome this limitation, we propose the "pruning & fine-tuning" method that consistently outperforms lottery ticket sparse training under the same pruning algorithm and the same total training epochs. Extensive experiments over multiple deep models (VGG, ResNet, MobileNet-v2) on different datasets have been conducted to justify our proposals.

Tue 20 July 17:35 - 17:40 PDT

Spotlight
LIME: Learning Inductive Bias for Primitives of Mathematical Reasoning

Yuhuai Wu · Markus Rabe · Wenda Li · Jimmy Ba · Roger Grosse · Christian Szegedy

While designing inductive bias in neural architectures has been widely studied, we hypothesize that transformer networks are flexible enough to learn inductive bias from suitable generic tasks. Here, we replace architecture engineering by encoding inductive bias in the form of datasets. Inspired by Peirce's view that deduction, induction, and abduction are the primitives of reasoning, we design three synthetic tasks that are intended to require the model to have these three abilities. We specifically design these tasks to be synthetic and devoid of mathematical knowledge to ensure that only the fundamental reasoning biases can be learned from these tasks. This defines a new pre-training methodology called "LIME" (Learning Inductive bias for Mathematical rEasoning). Models trained with LIME significantly outperform vanilla transformers on four very different large mathematical reasoning benchmarks. Unlike dominating the computation cost as traditional pre-training approaches, LIME requires only a small fraction of the computation cost of the typical downstream task. The code for generating LIME tasks is available at https://github.com/tonywu95/LIME.

Tue 20 July 17:40 - 17:45 PDT

Spotlight
Dense for the Price of Sparse: Improved Performance of Sparsely Initialized Networks via a Subspace Offset

Ilan Price · Jared Tanner

That neural networks may be pruned to high sparsities and retain high accuracy is well established. Recent research efforts focus on pruning immediately after initialization so as to allow the computational savings afforded by sparsity to extend to the training process. In this work, we introduce a new `DCT plus Sparse' layer architecture, which maintains information propagation and trainability even with as little as 0.01% trainable parameters remaining. We show that standard training of networks built with these layers, and pruned at initialization, achieves state-of-the-art accuracy for extreme sparsities on a variety of benchmark network architectures and datasets. Moreover, these results are achieved using only simple heuristics to determine the locations of the trainable parameters in the network, and thus without having to initially store or compute with the full, unpruned network, as is required by competing prune-at-initialization algorithms. Switching from standard sparse layers to DCT plus Sparse layers does not increase the storage footprint of a network and incurs only a small additional computational overhead.

Tue 20 July 17:45 - 17:50 PDT

Spotlight
Learning Neural Network Subspaces

Mitchell Wortsman · Maxwell Horton · Carlos Guestrin · Ali Farhadi · Mohammad Rastegari

Recent observations have advanced our understanding of the neural network optimization landscape, revealing the existence of (1) paths of high accuracy containing diverse solutions and (2) wider minima offering improved performance. Previous methods observing diverse paths require multiple training runs. In contrast we aim to leverage both property (1) and (2) with a single method and in a single training run. With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks. These neural network subspaces contain diverse solutions that can be ensembled, approaching the ensemble performance of independently trained networks without the training cost. Moreover, using the subspace midpoint boosts accuracy, calibration, and robustness to label noise, outperforming Stochastic Weight Averaging.

Tue 20 July 17:50 - 17:55 PDT

Q&A
Q&A