Optimal Transport

Moderator: Marco Cuturi


Chat is not available.

Tue 20 July 5:00 - 5:20 PDT
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks

Jiaojiao Fan · Amirhossein Taghvaei · Yongxin Chen

Wasserstein Barycenter is a principled approach to represent the weighted mean of a given set of probability distributions, utilizing the geometry induced by optimal transport. In this work, we present a novel scalable algorithm to approximate the Wasserstein Barycenters aiming at high-dimensional applications in machine learning. Our proposed algorithm is based on the Kantorovich dual formulation of the Wasserstein-2 distance as well as a recent neural network architecture, input convex neural network, that is known to parametrize convex functions. The distinguishing features of our method are: i) it only requires samples from the marginal distributions; ii) unlike the existing approaches, it represents the Barycenter with a generative model and can thus generate infinite samples from the barycenter without querying the marginal distributions; iii) it works similar to Generative Adversarial Model in one marginal case. We demonstratethe efficacy of our algorithm by comparing it with the state-of-art methods in multiple experiments.

[ Paper PDF ] [ ]
Tue 20 July 5:20 - 5:25 PDT
Outlier-Robust Optimal Transport

Debarghya Mukherjee · Aritra Guha · Justin Solomon · Yuekai Sun · Mikhail Yurochkin

Optimal transport (OT) measures distances between distributions in a way that depends on the geometry of the sample space. In light of recent advances in computational OT, OT distances are widely used as loss functions in machine learning. Despite their prevalence and advantages, OT loss functions can be extremely sensitive to outliers. In fact, a single adversarially-picked outlier can increase the standard $W_2$-distance arbitrarily. To address this issue, we propose an outlier-robust formulation of OT. Our formulation is convex but challenging to scale at a first glance. Our main contribution is deriving an \emph{equivalent} formulation based on cost truncation that is easy to incorporate into modern algorithms for computational OT. We demonstrate the benefits of our formulation in mean estimation problems under the Huber contamination model in simulations and outlier detection tasks on real data.

[ Paper PDF ] [ ]
Tue 20 July 5:25 - 5:30 PDT
Dataset Dynamics via Gradient Flows in Probability Space

David Alvarez-Melis · Nicolo Fusi

Various machine learning tasks, from generative modeling to domain adaptation, revolve around the concept of dataset transformation and manipulation. While various methods exist for transforming unlabeled datasets, principled methods to do so for labeled (e.g., classification) datasets are missing. In this work, we propose a novel framework for dataset transformation, which we cast as optimization over data-generating joint probability distributions. We approach this class of problems through Wasserstein gradient flows in probability space, and derive practical and efficient particle-based methods for a flexible but well-behaved class of objective functions. Through various experiments, we show that this framework can be used to impose constraints on classification datasets, adapt them for transfer learning, or to re-purpose fixed or black-box models to classify —with high accuracy— previously unseen datasets.

[ Paper PDF ] [ ]
Tue 20 July 5:30 - 5:35 PDT
Sliced Iterative Normalizing Flows

Biwei Dai · Uros Seljak

We develop an iterative (greedy) deep learning (DL) algorithm which is able to transform an arbitrary probability distribution function (PDF) into the target PDF. The model is based on iterative Optimal Transport of a series of 1D slices, matching on each slice the marginal PDF to the target. The axes of the orthogonal slices are chosen to maximize the PDF difference using Wasserstein distance at each iteration, which enables the algorithm to scale well to high dimensions. As special cases of this algorithm, we introduce two sliced iterative Normalizing Flow (SINF) models, which map from the data to the latent space (GIS) and vice versa (SIG). We show that SIG is able to generate high quality samples of image datasets, which match the GAN benchmarks, while GIS obtains competitive results on density estimation tasks compared to the density trained NFs, and is more stable, faster, and achieves higher p(x) when trained on small training sets. SINF approach deviates significantly from the current DL paradigm, as it is greedy and does not use concepts such as mini-batching, stochastic gradient descent and gradient back-propagation through deep layers.

[ Paper PDF ] [ ]
Tue 20 July 5:35 - 5:40 PDT
Low-Rank Sinkhorn Factorization

Meyer Scetbon · Marco Cuturi · Gabriel Peyré

Several recent applications of optimal transport (OT) theory to machine learning have relied on regularization, notably entropy and the Sinkhorn algorithm. Because matrix-vector products are pervasive in the Sinkhorn algorithm, several works have proposed to \textit{approximate} kernel matrices appearing in its iterations using low-rank factors. Another route lies instead in imposing low-nonnegative rank constraints on the feasible set of couplings considered in OT problems, with no approximations on cost nor kernel matrices. This route was first explored by~\citet{forrow2018statistical}, who proposed an algorithm tailored for the squared Euclidean ground cost, using a proxy objective that can be solved through the machinery of regularized 2-Wasserstein barycenters. Building on this, we introduce in this work a generic approach that aims at solving, in full generality, the OT problem under low-nonnegative rank constraints with arbitrary costs. Our algorithm relies on an explicit factorization of low-rank couplings as a product of \textit{sub-coupling} factors linked by a common marginal; similar to an NMF approach, we alternatively updates these factors. We prove the non-asymptotic stationary convergence of this algorithm and illustrate its efficiency on benchmark experiments.

[ Paper PDF ] [ ]
Tue 20 July 5:40 - 5:45 PDT
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation

Kilian Fatras · Thibault Séjourné · Rémi Flamary · Nicolas Courty

Optimal transport distances have found many applications in machine learning for their capacity to compare non-parametric probability distributions. Yet their algorithmic complexity generally prevents their direct use on large scale datasets. Among the possible strategies to alleviate this issue, practitioners can rely on computing estimates of these distances over subsets of data, i.e. minibatches. While computationally appealing, we highlight in this paper some limits of this strategy, arguing it can lead to undesirable smoothing effects. As an alternative, we suggest that the same minibatch strategy coupled with unbalanced optimal transport can yield more robust behaviors. We discuss the associated theoretical properties, such as unbiased estimators, existence of gradients and concentration bounds. Our experimental study shows that in challenging problems associated to domain adaptation, the use of unbalanced optimal transport leads to significantly better results, competing with or surpassing recent baselines.

[ Paper PDF ] [ ]
Tue 20 July 5:45 - 5:50 PDT
Making transport more robust and interpretable by moving data through a small number of anchor points

Chi-Heng Lin · Mehdi Azabou · Eva Dyer

Optimal transport (OT) is a widely used technique for distribution alignment, with applications throughout the machine learning, graphics, and vision communities. Without any additional structural assumptions on transport, however, OT can be fragile to outliers or noise, especially in high dimensions. Here, we introduce Latent Optimal Transport (LOT), a new approach for OT that simultaneously learns low-dimensional structure in data while leveraging this structure to solve the alignment task. The idea behind our approach is to learn two sets of ``anchors'' that constrain the flow of transport between a source and target distribution. In both theoretical and empirical studies, we show that LOT regularizes the rank of transport and makes it more robust to outliers and the sampling density. We show that by allowing the source and target to have different anchors, and using LOT to align the latent spaces between anchors, the resulting transport plan has better structural interpretability and highlights connections between both the individual data points and the local geometry of the datasets.

[ Paper PDF ] [ ]
Tue 20 July 5:50 - 5:55 PDT

[ ]