Skip to yearly menu bar Skip to main content


Graph Learning

Moderator: Kevin Swersky

Chat is not available.

Tue 20 July 5:00 - 5:20 PDT

Size-Invariant Graph Representations for Graph Classification Extrapolations

Beatrice Bevilacqua · Yangze Zhou · Bruno Ribeiro

In general, graph representation learning methods assume that the train and test data come from the same distribution. In this work we consider an underexplored area of an otherwise rapidly developing field of graph representation learning: The task of out-of-distribution (OOD) graph classification, where train and test data have different distributions, with test data unavailable during training. Our work shows it is possible to use a causal model to learn approximately invariant representations that better extrapolate between train and test data. Finally, we conclude with synthetic and real-world dataset experiments showcasing the benefits of representations that are invariant to train/test distribution shifts.

Tue 20 July 5:20 - 5:25 PDT

Consistent Nonparametric Methods for Network Assisted Covariate Estimation

Xueyu Mao · Deepayan Chakrabarti · Purnamrita Sarkar

Networks with node covariates are commonplace: for example, people in a social network have interests, or product preferences, etc. If we know the covariates for some nodes, can we infer them for the remaining nodes? In this paper we propose a new similarity measure between two nodes based on the patterns of their 2-hop neighborhoods. We show that a simple algorithm (CN-VEC) like nearest neighbor regression with this metric is consistent for a wide range of models when the degree grows faster than $n^{1/3}$ up-to logarithmic factors, where $n$ is the number of nodes. For "low-rank" latent variable models, the natural contender will be to estimate the latent variables using SVD and use them for non-parametric regression. While we show consistency of this method under less stringent sparsity conditions, our experimental results suggest that the simple local CN-VEC method either outperforms the global SVD-RBF method, or has comparable performance for low rank models. We also present simulated and real data experiments to show the effectiveness of our algorithms compared to the state of the art.

Tue 20 July 5:25 - 5:30 PDT

Explainable Automated Graph Representation Learning with Hyperparameter Importance

Xin Wang · Shuyi Fan · Kun Kuang · Wenwu Zhu

Current graph representation (GR) algorithms require huge demand of human experts in hyperparameter tuning, which significantly limits their practical applications, leading to an urge for automated graph representation without human intervention. Although automated machine learning (AutoML) serves as a good candidate for automatic hyperparameter tuning, little literature has been reported on automated graph presentation learning and the only existing work employs a black-box strategy, lacking insights into explaining the relative importance of different hyperparameters. To address this issue, we study explainable automated graph representation with hyperparameter importance in this paper. We propose an explainable AutoML approach for graph representation (e-AutoGR) which utilizes explainable graph features during performance estimation and learns decorrelated importance weights for different hyperparameters in affecting the model performance through a non-linear decorrelated weighting regression. These learned importance weights can in turn help to provide more insights in hyperparameter search procedure. We theoretically prove the soundness of the decorrelated weighting algorithm. Extensive experiments on real-world datasets demonstrate the superiority of our proposed e-AutoGR model against state-of-the-art methods in terms of both model performance and hyperparameter importance explainability.

Tue 20 July 5:30 - 5:35 PDT

Breaking the Limits of Message Passing Graph Neural Networks

Muhammet Balcilar · Pierre Heroux · Benoit Gauzere · Pascal Vasseur · Sebastien Adam · Paul Honeine

Since the Message Passing (Graph) Neural Networks (MPNNs) have a linear complexity with respect to the number of nodes when applied to sparse graphs, they have been widely implemented and still raise a lot of interest even though their theoretical expressive power is limited to the first order Weisfeiler-Lehman test (1-WL). In this paper, we show that if the graph convolution supports are designed in spectral-domain by a non-linear custom function of eigenvalues and masked with an arbitrary large receptive field, the MPNN is theoretically more powerful than the 1-WL test and experimentally as powerful as a 3-WL existing models, while remaining spatially localized. Moreover, by designing custom filter functions, outputs can have various frequency components that allow the convolution process to learn different relationships between a given input graph signal and its associated properties. So far, the best 3-WL equivalent graph neural networks have a computational complexity in $\mathcal{O}(n^3)$ with memory usage in $\mathcal{O}(n^2)$, consider non-local update mechanism and do not provide the spectral richness of output profile. The proposed method overcomes all these aforementioned problems and reaches state-of-the-art results in many downstream tasks.

Tue 20 July 5:35 - 5:40 PDT

From Local Structures to Size Generalization in Graph Neural Networks

Gilad Yehudai · Ethan Fetaya · Eli Meirom · Gal Chechik · Haggai Maron

Graph neural networks (GNNs) can process graphs of different sizes, but their ability to generalize across sizes, specifically from small to large graphs, is still not well understood. In this paper, we identify an important type of data where generalization from small to large graphs is challenging: graph distributions for which the local structure depends on the graph size. This effect occurs in multiple important graph learning domains, including social and biological networks. We first prove that when there is a difference between the local structures, GNNs are not guaranteed to generalize across sizes: there are "bad" global minima that do well on small graphs but fail on large graphs. We then study the size-generalization problem empirically and demonstrate that when there is a discrepancy in local structure, GNNs tend to converge to non-generalizing solutions. Finally, we suggest two approaches for improving size generalization, motivated by our findings. Notably, we propose a novel Self-Supervised Learning (SSL) task aimed at learning meaningful representations of local structures that appear in large graphs. Our SSL task improves classification accuracy on several popular datasets.

Tue 20 July 5:40 - 5:45 PDT

Interpretable Stability Bounds for Spectral Graph Filters

Henry Kenlay · Dorina Thanou · Xiaowen Dong

Graph-structured data arise in a variety of real-world context ranging from sensor and transportation to biological and social networks. As a ubiquitous tool to process graph-structured data, spectral graph filters have been used to solve common tasks such as denoising and anomaly detection, as well as design deep learning architectures such as graph neural networks. Despite being an important tool, there is a lack of theoretical understanding of the stability properties of spectral graph filters, which are important for designing robust machine learning models. In this paper, we study filter stability and provide a novel and interpretable upper bound on the change of filter output, where the bound is expressed in terms of the endpoint degrees of the deleted and newly added edges, as well as the spatial proximity of those edges. This upper bound allows us to reason, in terms of structural properties of the graph, when a spectral graph filter will be stable. We further perform extensive experiments to verify intuition that can be gained from the bound.

Tue 20 July 5:45 - 5:50 PDT

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

Ciwan Ceylan · Salla FranzĂ©n · Florian T. Pokorny

Banks are required to analyse large transaction datasets as a part of the fight against financial crime. Today, this analysis is either performed manually by domain experts or using expensive feature engineering. Gradient flow analysis allows for basic representation learning as node potentials can be inferred directly from network transaction data. However, the gradient model has a fundamental limitation: it cannot represent all types of of network flows. Furthermore, standard methods for learning the gradient flow are not appropriate for flow signals that span multiple orders of magnitude and contain outliers, i.e. transaction data. In this work, the gradient model is extended to a gated version and we prove that it, unlike the gradient model, is a universal approximator for flows on graphs. To tackle the mentioned challenges of transaction data, we propose a multi-scale and outlier robust loss function based on the Student-t log-likelihood. Ethereum transaction data is used for evaluation and the gradient models outperform MLP models using hand-engineered and node2vec features in terms of relative error. These results extend to 60 synthetic datasets, with experiments also showing that the gated gradient model learns qualitative information about the underlying synthetic generative flow distributions.

Tue 20 July 5:50 - 5:55 PDT