Skip to yearly menu bar Skip to main content


Poster

Smooth pp-Wasserstein Distance: Structure, Empirical Approximation, and Statistical Applications

Sloan Nietert · Ziv Goldfeld · Kengo Kato

Keywords: [ Statistical Learning Theory ]


Abstract: Discrepancy measures between probability distributions, often termed statistical distances, are ubiquitous in probability theory, statistics and machine learning. To combat the curse of dimensionality when estimating these distances from data, recent work has proposed smoothing out local irregularities in the measured distributions via convolution with a Gaussian kernel. Motivated by the scalability of this framework to high dimensions, we investigate the structural and statistical behavior of the Gaussian-smoothed pp-Wasserstein distance W(σ)pW(σ)p, for arbitrary p1p1. After establishing basic metric and topological properties of W(σ)pW(σ)p, we explore the asymptotic statistical properties of W(σ)p(ˆμn,μ)W(σ)p(^μn,μ), where ˆμn^μn is the empirical distribution of nn independent observations from μμ. We prove that W(σ)pW(σ)p enjoys a parametric empirical convergence rate of n1/2n1/2, which contrasts the n1/dn1/d rate for unsmoothed \Wp\Wp when d3d3. Our proof relies on controlling W(σ)pW(σ)p by a ppth-order smooth Sobolev distance d(σ)pd(σ)p and deriving the limit distribution of nd(σ)p(ˆμn,μ)nd(σ)p(^μn,μ) for all dimensions dd. As applications, we provide asymptotic guarantees for two-sample testing and minimum distance estimation using W(σ)pW(σ)p, with experiments for p=2p=2 using a maximum mean discrepancy formulation~of~d(σ)2d(σ)2.

Chat is not available.