Poster

Variational Data Assimilation with a Learned Inverse Observation Operator

Thomas Frerix · Dmitrii Kochkov · Jamie Smith · Daniel Cremers · Michael Brenner · Stephan Hoyer

Keywords: [ Sustainability and Environment ]

[ Abstract ]
[ Paper ]
[ Visit Poster at Spot B0 in Virtual World ]
Tue 20 Jul 9 a.m. PDT — 11 a.m. PDT
 
Spotlight presentation: Optimization 2
Tue 20 Jul 7 a.m. PDT — 8 a.m. PDT

Abstract:

Variational data assimilation optimizes for an initial state of a dynamical system such that its evolution fits observational data. The physical model can subsequently be evolved into the future to make predictions. This principle is a cornerstone of large scale forecasting applications such as numerical weather prediction. As such, it is implemented in current operational systems of weather forecasting agencies across the globe. However, finding a good initial state poses a difficult optimization problem in part due to the non-invertible relationship between physical states and their corresponding observations. We learn a mapping from observational data to physical states and show how it can be used to improve optimizability. We employ this mapping in two ways: to better initialize the non-convex optimization problem, and to reformulate the objective function in better behaved physics space instead of observation space. Our experimental results for the Lorenz96 model and a two-dimensional turbulent fluid flow demonstrate that this procedure significantly improves forecast quality for chaotic systems.

Chat is not available.