Skip to yearly menu bar Skip to main content


Efficient Online Learning for Dynamic k-Clustering

Dimitris Fotakis · Georgios Piliouras · Stratis Skoulakis


Keywords: [ Online Learning Theory ]

Abstract: In this work, we study dynamic clustering problems from the perspective of online learning. We consider an online learning problem, called \textit{Dynamic $k$-Clustering}, in which $k$ centers are maintained in a metric space over time (centers may change positions) such as a dynamically changing set of $r$ clients is served in the best possible way. The connection cost at round $t$ is given by the \textit{$p$-norm} of the vector formed by the distance of each client to its closest center at round $t$, for some $p\geq 1$. We design a \textit{$\Theta\left( \min(k,r) \right)$-regret} polynomial-time online learning algorithm, while we show that, under some well-established computational complexity conjectures, \textit{constant-regret} cannot be achieved in polynomial-time. In addition to the efficient solution of Dynamic $k$-Clustering, our work contributes to the long line of research of combinatorial online learning.

Chat is not available.