Skip to yearly menu bar Skip to main content


Kernel-Based Reinforcement Learning: A Finite-Time Analysis

Omar Darwiche Domingues · Pierre Menard · Matteo Pirotta · Emilie Kaufmann · Michal Valko

Keywords: [ RL, Decisions and Control Theory ]

Abstract: We consider the exploration-exploitation dilemma in finite-horizon reinforcement learning problems whose state-action space is endowed with a metric. We introduce Kernel-UCBVI, a model-based optimistic algorithm that leverages the smoothness of the MDP and a non-parametric kernel estimator of the rewards and transitions to efficiently balance exploration and exploitation. For problems with $K$ episodes and horizon $H$, we provide a regret bound of $\widetilde{O}\left( H^3 K^{\frac{2d}{2d+1}}\right)$, where $d$ is the covering dimension of the joint state-action space. This is the first regret bound for kernel-based RL using smoothing kernels, which requires very weak assumptions on the MDP and applies to a wide range of tasks. We empirically validate our approach in continuous MDPs with sparse rewards.

Chat is not available.