Oral

Multi-Dimensional Classification via Sparse Label Encoding

BINBIN JIA, Min-Ling Zhang

[ Abstract ] [ Livestream: Visit Supervised Learning 6 ] [ Paper ]

In multi-dimensional classification (MDC), there are multiple class variables in the output space with each of them corresponding to one heterogeneous class space. Due to the heterogeneity of class spaces, it is quite challenging to consider the dependencies among class variables when learning from MDC examples. In this paper, we propose a novel MDC approach named SLEM which learns the predictive model in an encoded label space instead of the original heterogeneous one. Specifically, SLEM works in an encoding-training-decoding framework. In the encoding phase, each class vector is mapped into a real-valued one via three cascaded operations including pairwise grouping, one-hot conversion and sparse linear encoding. In the training phase, a multi-output regression model is learned within the encoded label space. In the decoding phase, the predicted class vector is obtained by adapting orthogonal matching pursuit over outputs of the learned multi-output regression model. Experimental results clearly validate the superiority of SLEM against state-of-the-art MDC approaches.

Chat is not available.