Skip to yearly menu bar Skip to main content


Timezone: Europe/Vienna
Filter Events
Oral
8 Events in this session
Hongwei Wen · Jingyi Cui · Hanyuan Hang · Jiabin Liu · Yisen Wang · Zhouchen Lin
Fidel Ernesto Diaz Andino · Maria Kokkou · Mateus de Oliveira Oliveira · Farhad Vadiee
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama
Julian Katz-Samuels · Jifan Zhang · Lalit Jain · Kevin Jamieson
Alessio Mazzetto · Cyrus Cousins · Dylan Sam · Stephen Bach · Eli Upfal
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Xinqi Zhu · Chang Xu · Dacheng Tao
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang
Atsushi Suzuki · Atsushi Nitanda · Jing Wang · Linchuan Xu · Kenji Yamanishi · Marc Cavazza
Hugo Yèche · Gideon Dresdner · Francesco Locatello · Matthias Hüser · Gunnar Rätsch
Oleh Rybkin · Kostas Daniilidis · Sergey Levine
Alessandro Sordoni · Nouha Dziri · Hannes Schulz · Geoff Gordon · Philip Bachman · Remi Tachet des Combes
Gautam Singh · Skand Peri · Junghyun Kim · Hyunseok Kim · Sungjin Ahn
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Mingkang Zhu · Tianlong Chen · Zhangyang “Atlas” Wang
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama
Carl-Johann Simon-Gabriel · Noman Ahmed Sheikh · Andreas Krause
Shufei Zhang · Zhuang Qian · Kaizhu Huang · Qiufeng Wang · Rui Zhang · Xinping Yi
Yunjuan Wang · Poorya Mianjy · Raman Arora
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Honghua Zhang · Brendan Juba · Guy Van den Broeck
Thanh Lam · Nghia Hoang · Bryan Kian Hsiang Low · Patrick Jaillet
Todd Huster · Jeremy Cohen · Zinan Lin · Kevin Chan · Charles Kamhoua · Nandi O. Leslie · Cho-Yu Chiang · Vyas Sekar
Vardis Kandiros · Yuval Dagan · Nishanth Dikkala · Surbhi Goel · Constantinos Daskalakis
Charles Dickens · Connor Pryor · Eriq Augustine · Alexander Miller · Lise Getoor
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Maximilian Lam · Gu-Yeon Wei · David Brooks · Vijay Janapa Reddi · Michael Mitzenmacher
Matt Jordan · Alexandros Dimakis
Joao Marques-Silva · Thomas Gerspacher · Martin Cooper · Alexey Ignatiev · Nina Narodytska
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li
Santiago Zanella-Beguelin · Shruti Tople · Andrew Paverd · Boris Köpf
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Haozhe Feng · Zhaoyang You · Minghao Chen · Tianye Zhang · Minfeng Zhu · Fei Wu · Chao Wu · Wei Chen
Yunzhe Tao · Sahika Genc · Jonathan Chung · TAO SUN · Sunil Mallya
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai
JaeWoong Shin · Hae Beom Lee · Boqing Gong · Sung Ju Hwang
Luisa Zintgraf · Leo Feng · Cong Lu · Maximilian Igl · Kristian Hartikainen · Katja Hofmann · Shimon Whiteson
Kaichao You · Yong Liu · Jianmin Wang · Mingsheng Long
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Arkopal Dutt · Andrey Lokhov · Marc Vuffray · Sidhant Misra
Luca Ambrogioni · Gianluigi Silvestri · Marcel van Gerven
Andres Potapczynski · Luhuan Wu · Dan Biderman · Geoff Pleiss · John Cunningham
Erik Bodin · Zhenwen Dai · Neill Campbell · Carl Henrik Ek
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Liyang Liu · Shilong Zhang · Zhanghui Kuang · Aojun Zhou · Jing-Hao Xue · Xinjiang Wang · Yimin Chen · Wenming Yang · Qingmin Liao · Wayne Zhang
Mike Lewis · Shruti Bhosale · Tim Dettmers · Naman Goyal · Luke Zettlemoyer
Huang Hengguan · Hongfu Liu · Hao Wang · Chang Xiao · Ye Wang
HanQin Cai · Yuchen Lou · Daniel Mckenzie · Wotao Yin
Q&A
Go to Event Page
Oral
2:00 AM - 3:00 AM
8 Events in this session
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson
Chenfeng Miao · Liang Shuang · Zhengchen Liu · Chen Minchuan · Jun Ma · Shaojun Wang · Jing Xiao
Jack Weston · Raphael Lenain · Udeepa Meepegama · Emil Fristed
Chengyi Wang · Yu Wu · Yao Qian · Kenichi Kumatani · Shujie Liu · Furu Wei · Michael Zeng · Xuedong Huang
Zhanpeng Zeng · Yunyang Xiong · Sathya Ravi · Shailesh Acharya · Glenn Fung · Vikas Singh
Q&A
Go to Event Page
Social

RL Social

Dibya Ghosh · Hager Radi Abdelwahed · Derek Li · Alex Ayoub · Erfan Miahi · Rishabh Agarwal · Charline Le Lan · Abhishek Naik · John D. Martin · Shruti Mishra · Adrien Ali Taiga
2:00 AM - 4:00 AM

We invite anyone interested in reinforcement learning to join us in a GatherTown-format social. The goal is to connect both new and experienced RL researchers, to share ideas and discuss their recent work. Folks from anywhere in the world are welcome to participate, provided the timing is compatible with their schedule.

... more
Oral
3:00 AM - 4:00 AM
8 Events in this session
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha
Fnu Suya · Saeed Mahloujifar · Anshuman Suri · David Evans · Yuan Tian
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar
Gang Qiao · Weijie Su · Li Zhang
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
7 Events in this session
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li
Jin Zhang · Jianhao Wang · Hao Hu · Tong Chen · Yingfeng Chen · Changjie Fan · Chongjie Zhang
Eric Mitchell · Rafael Rafailov · Xue Bin Peng · Sergey Levine · Chelsea Finn
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
8 Events in this session
Zhihao Jiang · Pinyan Lu · Zhihao Gavin Tang · Yuhao Zhang
Dimitris Fotakis · Georgios Piliouras · Stratis Skoulakis
My Phan · Philip Thomas · Erik Learned-Miller
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
8 Events in this session
Cheng Fu · Hanxian Huang · Xinyun Chen · Yuandong Tian · Jishen Zhao
Mark Nemecek · Ron Parr
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari
Jiaxiang Ren · Zijie Zhang · Jiayin Jin · Xin Zhao · Sixing Wu · Yang Zhou · Yelong Shen · Tianshi Che · Ruoming Jin · Dejing Dou
Yuki Takezawa · Ryoma Sato · Makoto Yamada
Noam Wies · Yoav Levine · Daniel Jannai · Amnon Shashua
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
8 Events in this session
Zhili Feng · Praneeth Kacham · David Woodruff
Osman Asif Malik · Stephen Becker
Kasper Green Larsen · Rasmus Pagh · Jakub Tětek
Yifei Jiang · Yi Li · Yiming Sun · Jiaxin Wang · David Woodruff
Wenbo Gong · Kaibo Zhang · Yingzhen Li · Jose Miguel Hernandez-Lobato
Vasileios Kalantzis · Georgios Kollias · Shashanka Ubaru · Athanasios N. Nikolakopoulos · Lior Horesh · Kenneth Clarkson
Yogesh Dahiya · Fedor Fomin · Fahad Panolan · Kirill Simonov
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
8 Events in this session
Yookoon Park · Sangho Lee · Gunhee Kim · David Blei
Dominik Zietlow · Michal Rolinek · Georg Martius
Chunting Zhou · Xuezhe Ma · Paul Michel · Graham Neubig
Sara Sabour Rouh Aghdam · Andrea Tagliasacchi · Soroosh Yazdani · Geoffrey Hinton · David Fleet
Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez
Tung Nguyen · Rui Shu · Tuan Pham · Hung Bui · Stefano Ermon
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
8 Events in this session
Abhinav Aggarwal · Shiva Kasiviswanathan · Zekun Xu · Oluwaseyi Feyisetan · Nathanael Teissier
Hanwen Liu · Zhenyu Weng · Yuesheng Zhu
Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela
Klas Leino · Zifan Wang · Matt Fredrikson
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
7 Events in this session
Tony Z. Zhao · Eric Wallace · Shi Feng · Dan Klein · Sameer Singh
Moontae Lee · Sungjun Cho · Kun Dong · David Mimno · David Bindel
Paul Liang · Chiyu Wu · Louis-Philippe Morency · Ruslan Salakhutdinov
Charlotte Caucheteux · Alexandre Gramfort · Jean-Remi King
Xuan-Phi Nguyen · Shafiq Joty · Thanh-Tung Nguyen · Kui Wu · Ai Ti Aw
Hao Zhu · Graham Neubig · Yonatan Bisk
Q&A
Go to Event Page
Oral
3:00 AM - 4:00 AM
8 Events in this session
Lorenz Richter · Leon Sallandt · Nikolas Nüsken
Da Yu · Huishuai Zhang · Wei Chen · Jian Yin · Tie-Yan Liu
Shangtong Zhang · Hengshuai Yao · Shimon Whiteson
Shangtong Zhang · Yi Wan · Richard Sutton · Shimon Whiteson
Hongyi Guo · Zuyue Fu · Zhuoran Yang · Zhaoran Wang
Peng Wang · Huikang Liu · Zirui Zhou · Anthony Man-Cho So
Q&A
Go to Event Page
Spotlight
4:00 AM - 5:00 AM
10 Events in this session
Jonathan Crabbé · Mihaela van der Schaar
Chia-Hung Yuan · Shan-Hung (Brandon) Wu
Jianfeng Chi · Yuan Tian · Geoff Gordon · Han Zhao
Guangyu Shen · Yingqi Liu · Guanhong Tao · Shengwei An · Qiuling Xu · Siyuan Cheng · Shiqing Ma · Xiangyu Zhang
Yang Lu · Wenbo Guo · Xinyu Xing · William Stafford Noble
Natalia Martinez Gil · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro
Sruthi Gorantla · Amit Jayant Deshpande · Anand Louis
Nian Si · Karthyek Murthy · Jose Blanchet · Viet Anh Nguyen
Q&A
Go to Event Page
Oral
4:00 AM - 5:00 AM
7 Events in this session
Aditya Bhaskara · Aravinda Kanchana Ruwanpathirana · Pruthuvi Maheshakya Wijewardena
Zhao Song · David Woodruff · Zheng Yu · Lichen Zhang
Chiranjib Bhattacharyya · Ravindran Kannan · Amit Kumar
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re
Shuli Jiang · Dongyu Li · Irene Mengze Li · Arvind Mahankali · David Woodruff
Q&A
Go to Event Page
Oral
4:00 AM - 5:00 AM
8 Events in this session
Alec Radford · Jong Wook Kim · Chris Hallacy · Aditya Ramesh · Gabriel Goh · Sandhini Agarwal · Girish Sastry · Amanda Askell · Pamela Mishkin · Jack Clark · Gretchen Krueger · Ilya Sutskever
Mark Sandler · Max Vladymyrov · Andrey Zhmoginov · Nolan Miller · Tom Madams · Andrew Jackson · Blaise Agüera y Arcas
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf
Corinna Cortes · Mehryar Mohri · Ananda Theertha Suresh · Ningshan Zhang
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama
Q&A
Go to Event Page
Oral
4:00 AM - 5:00 AM
8 Events in this session
Yang Yongyi · Tang Liu · Yangkun Wang · Jinjing Zhou · Quan Gan · Zhewei Wei · Zheng Zhang · Zengfeng Huang · David Wipf
Bo Li · Qili Wang · Gim Hee Lee
Zuoyu Yan · Tengfei Ma · Liangcai Gao · Zhi Tang · Chao Chen
Hao Wu · Babak Esmaeili · Michael Wick · Jean-Baptiste Tristan · Jan-Willem van de Meent
Kieran Murphy · Carlos Esteves · Varun Jampani · Srikumar Ramalingam · Ameesh Makadia
Mehran Shakerinava · Siamak Ravanbakhsh
Sheng Jia · Ehsan Nezhadarya · Yuhuai Wu · Jimmy Ba
Q&A
Go to Event Page
Oral
4:00 AM - 5:00 AM
7 Events in this session
Go to Event Page
Oral
4:00 AM - 5:00 AM
8 Events in this session
Vincent Cohen-Addad · Silvio Lattanzi · Slobodan Mitrović · Ashkan Norouzi-Fard · Nikos Parotsidis · Jakub Tarnawski
Xinwang Liu · Li Liu · Qing Liao · Siwei Wang · Yi Zhang · Wenxuan Tu · Chang Tang · Jiyuan Liu · En Zhu
Yu Inatsu · Shogo Iwazaki · Ichiro Takeuchi
Q&A
Go to Event Page
Oral
4:00 AM - 5:00 AM
8 Events in this session
Taehyeong Kim · Injune Hwang · Hyundo Lee · Hyunseo Kim · Won-Seok Choi · Joseph Lim · Byoung-Tak Zhang
Andrey Voynov · Stanislav Morozov · Artem Babenko
Jingyi Cui · Hanyuan Hang · Yisen Wang · Zhouchen Lin
Laxman Dhulipala · David Eisenstat · Jakub Łącki · Vahab Mirrokni · Jessica Shi
Vincent Cohen-Addad · Rémi de Joannis de Verclos · Guillaume Lagarde
Q&A
Go to Event Page
Oral
4:00 AM - 5:00 AM
5 Events in this session
Go to Event Page
Oral
4:00 AM - 5:00 AM
8 Events in this session
Jayaram Raghuram · Varun Chandrasekaran · Somesh Jha · Suman Banerjee
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao
Bohang Zhang · Tianle Cai · Zhou Lu · Di He · Liwei Wang
Kaizhao Liang · Yibo Zhang · Boxin Wang · Zhuolin Yang · Sanmi Koyejo · Bo Li
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li
Q&A
Go to Event Page
Oral
4:00 AM - 5:00 AM
5 Events in this session
Go to Event Page
Test Of Time
5:00 AM - 5:30 AM
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Junsu Kim · Sungsoo Ahn · Hankook Lee · Jinwoo Shin
Shanmukha Ramakrishna Vedantam · Arthur Szlam · Maximilian Nickel · Ari Morcos · Brenden Lake
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
5 Events in this session
Ilias Diakonikolas · Vasilis Kontonis · Christos Tzamos · Ali Vakilian · Nikos Zarifis
Elad Hazan · Karan Singh
Genevieve Flaspohler · Francesco Orabona · Judah Cohen · Soukayna Mouatadid · Miruna Oprescu · Paulo Orenstein · Lester Mackey
Jiaming Xu · Kuang Xu · Dana Yang
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou
David Arbour · Drew Dimmery · Arjun Sondhi
Jason Hartford · Victor Veitch · Dhanya Sridhar · Kevin Leyton-Brown
Limor Gultchin · David Watson · Matt J. Kusner · Ricardo Silva
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett
Michael Oberst · Nikolaj Thams · Jonas Peters · David Sontag
Zenna Tavares · James Koppel · Xin Zhang · Ria Das · Armando Solar-Lezama
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Dorian Baudry · Romain Gautron · Emilie Kaufmann · Odalric-Ambrym Maillard
Dorian Baudry · Yoan Russac · Olivier Cappé
James Cheshire · Pierre Menard · Alexandra Carpentier
Matteo Papini · Andrea Tirinzoni · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Shixiang Chen · Alfredo Garcia · Mingyi Hong · Shahin Shahrampour
Dmitry Kovalev · Egor Shulgin · Peter Richtarik · Alexander Rogozin · Alexander Gasnikov
Risheng Liu · Xuan Liu · Xiaoming Yuan · Shangzhi Zeng · Jin Zhang
Yiming Chen · Kun Yuan · Yingya Zhang · Pan Pan · Yinghui Xu · Wotao Yin
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Quoc Phong Nguyen · Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet
Filip de Roos · Alexandra Gessner · Philipp Hennig
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Weizhen Qi · Yeyun Gong · Jian Jiao · Yu Yan · Weizhu Chen · Dayiheng Liu · Kewen Tang · Houqiang Li · Jiusheng Chen · Ruofei Zhang · Ming Zhou · Nan Duan
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen
Itamar Zimerman · Eliya Nachmani · Lior Wolf
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai
Abhishek Kumar · Sunabha Chatterjee · Piyush Rai
Q&A
Go to Event Page
Spotlight
5:30 AM - 6:00 AM
6 Events in this session
Boseon Yoo · Jiwoo Lee · Janghoon Ju · Seijun Chung · Soyeon Kim · Jaesik Choi
Ziwei Ji · Nati Srebro · Matus Telgarsky
Jungmin Kwon · Jeongseop Kim · Hyunseo Park · In Kwon Choi
Alexander Tong · Guillaume Huguet · Amine Natik · Kincaid Macdonald · MANIK KUCHROO · Ronald Coifman · Guy Wolf · Smita Krishnaswamy
Amil Merchant · Luke Metz · Samuel Schoenholz · Ekin Dogus Cubuk
Q&A
Go to Event Page
Poster
6:00 AM - 8:00 AM
234 Events in this session
Dmitry Kovalev · Egor Shulgin · Peter Richtarik · Alexander Rogozin · Alexander Gasnikov
Jayaram Raghuram · Varun Chandrasekaran · Somesh Jha · Suman Banerjee
Osman Asif Malik · Stephen Becker
Luca Ambrogioni · Gianluigi Silvestri · Marcel van Gerven
HanQin Cai · Yuchen Lou · Daniel Mckenzie · Wotao Yin
Andres Potapczynski · Luhuan Wu · Dan Biderman · Geoff Pleiss · John Cunningham
Elad Hazan · Karan Singh
Hanshu YAN · Jingfeng Zhang · Gang Niu · Jiashi Feng · Vincent Tan · Masashi Sugiyama
Xinqi Zhu · Chang Xu · Dacheng Tao
Boseon Yoo · Jiwoo Lee · Janghoon Ju · Seijun Chung · Soyeon Kim · Jaesik Choi
Hao Wu · Babak Esmaeili · Michael Wick · Jean-Baptiste Tristan · Jan-Willem van de Meent
Shantanu Gupta · Hao Wang · Zachary Lipton · Yuyang Wang
Chulin Xie · Minghao Chen · Pin-Yu Chen · Bo Li
Xuan-Phi Nguyen · Shafiq Joty · Thanh-Tung Nguyen · Kui Wu · Ai Ti Aw
Alessandro Sordoni · Nouha Dziri · Hannes Schulz · Geoff Gordon · Philip Bachman · Remi Tachet des Combes
Dominik Zietlow · Michal Rolinek · Georg Martius
Badih Ghazi · Ravi Kumar · Pasin Manurangsi · Rasmus Pagh · Amer Sinha
alain rakotomamonjy · Ralaivola Liva
Alexander Tong · Guillaume Huguet · Amine Natik · Kincaid Macdonald · MANIK KUCHROO · Ronald Coifman · Guy Wolf · Smita Krishnaswamy
Zhili Feng · Praneeth Kacham · David Woodruff
Mihaela Rosca · Yan Wu · Benoit Dherin · David GT Barrett
Charlotte Caucheteux · Alexandre Gramfort · Jean-Remi King
Dimitris Fotakis · Georgios Piliouras · Stratis Skoulakis
Sheng Jia · Ehsan Nezhadarya · Yuhuai Wu · Jimmy Ba
Chenfeng Miao · Liang Shuang · Zhengchen Liu · Chen Minchuan · Jun Ma · Shaojun Wang · Jing Xiao
Mehran Shakerinava · Siamak Ravanbakhsh
Joao Marques-Silva · Thomas Gerspacher · Martin Cooper · Alexey Ignatiev · Nina Narodytska
Luisa Zintgraf · Leo Feng · Cong Lu · Maximilian Igl · Kristian Hartikainen · Katja Hofmann · Shimon Whiteson
Zhao Song · David Woodruff · Zheng Yu · Lichen Zhang
Hao Zhu · Graham Neubig · Yonatan Bisk
Bo Li · Qili Wang · Gim Hee Lee
Jingyi Cui · Hanyuan Hang · Yisen Wang · Zhouchen Lin
Klas Leino · Zifan Wang · Matt Fredrikson
Idan Achituve · Aviv Navon · Yochai Yemini · Gal Chechik · Ethan Fetaya
Maximilian Lam · Gu-Yeon Wei · David Brooks · Vijay Janapa Reddi · Michael Mitzenmacher
Filip de Roos · Alexandra Gessner · Philipp Hennig
Haozhe Feng · Zhaoyang You · Minghao Chen · Tianye Zhang · Minfeng Zhu · Fei Wu · Chao Wu · Wei Chen
Abhinav Aggarwal · Shiva Kasiviswanathan · Zekun Xu · Oluwaseyi Feyisetan · Nathanael Teissier
JaeWoong Shin · Hae Beom Lee · Boqing Gong · Sung Ju Hwang
Da Yu · Huishuai Zhang · Wei Chen · Jian Yin · Tie-Yan Liu
Jack Weston · Raphael Lenain · Udeepa Meepegama · Emil Fristed
Ilias Diakonikolas · Vasilis Kontonis · Christos Tzamos · Ali Vakilian · Nikos Zarifis
Alec Radford · Jong Wook Kim · Chris Hallacy · Aditya Ramesh · Gabriel Goh · Sandhini Agarwal · Girish Sastry · Amanda Askell · Pamela Mishkin · Jack Clark · Gretchen Krueger · Ilya Sutskever
Hongwei Wen · Jingyi Cui · Hanyuan Hang · Jiabin Liu · Yisen Wang · Zhouchen Lin
Matteo Papini · Andrea Tirinzoni · Marcello Restelli · Alessandro Lazaric · Matteo Pirotta
Zuoyu Yan · Tengfei Ma · Liangcai Gao · Zhi Tang · Chao Chen
Kaichao You · Yong Liu · Jianmin Wang · Mingsheng Long
Jonathan Brophy · Daniel Lowd
Taehyeong Kim · Injune Hwang · Hyundo Lee · Hyunseo Kim · Won-Seok Choi · Joseph Lim · Byoung-Tak Zhang
Jin Zhang · Jianhao Wang · Hao Hu · Tong Chen · Yingfeng Chen · Changjie Fan · Chongjie Zhang
Mark Sandler · Max Vladymyrov · Andrey Zhmoginov · Nolan Miller · Tom Madams · Andrew Jackson · Blaise Agüera y Arcas
Fnu Suya · Saeed Mahloujifar · Anshuman Suri · David Evans · Yuan Tian
Chia-Hung Yuan · Shan-Hung (Brandon) Wu
Limor Gultchin · David Watson · Matt J. Kusner · Ricardo Silva
Peng Wang · Huikang Liu · Zirui Zhou · Anthony Man-Cho So
Hilal Asi · John Duchi · Alireza Fallah · Omid Javidbakht · Kunal Talwar
Hilal Asi · Vitaly Feldman · Tomer Koren · Kunal Talwar
Jiawei Zhang · Linyi Li · Huichen Li · Xiaolu Zhang · Shuang Yang · Bo Li
Itamar Zimerman · Eliya Nachmani · Lior Wolf
Michael Oberst · Nikolaj Thams · Jonas Peters · David Sontag
Yunzhe Tao · Sahika Genc · Jonathan Chung · TAO SUN · Sunil Mallya
Yunjuan Wang · Poorya Mianjy · Raman Arora
Junsu Kim · Sungsoo Ahn · Hankook Lee · Jinwoo Shin
Minghao Xu · Hang Wang · Bingbing Ni · Hongyu Guo · Jian Tang
Sanyam Kapoor · Marc Finzi · Ke Alexander Wang · Andrew Wilson
Vardis Kandiros · Yuval Dagan · Nishanth Dikkala · Surbhi Goel · Constantinos Daskalakis
Huang Hengguan · Hongfu Liu · Hao Wang · Chang Xiao · Ye Wang
Gautam Singh · Skand Peri · Junghyun Kim · Hyunseok Kim · Sungjin Ahn
Yuki Takezawa · Ryoma Sato · Makoto Yamada
Tung Nguyen · Rui Shu · Tuan Pham · Hung Bui · Stefano Ermon
Shufei Zhang · Zhuang Qian · Kaizhu Huang · Qiufeng Wang · Rui Zhang · Xinping Yi
Bohang Zhang · Tianle Cai · Zhou Lu · Di He · Liwei Wang
Paul Liang · Chiyu Wu · Louis-Philippe Morency · Ruslan Salakhutdinov
Jianfeng Chi · Yuan Tian · Geoff Gordon · Han Zhao
Fidel Ernesto Diaz Andino · Maria Kokkou · Mateus de Oliveira Oliveira · Farhad Vadiee
Yookoon Park · Sangho Lee · Gunhee Kim · David Blei
Jason Hartford · Victor Veitch · Dhanya Sridhar · Kevin Leyton-Brown
Noam Wies · Yoav Levine · Daniel Jannai · Amnon Shashua
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang
Yiming Chen · Kun Yuan · Yingya Zhang · Pan Pan · Yinghui Xu · Wotao Yin
Yu Inatsu · Shogo Iwazaki · Ichiro Takeuchi
Wenbo Gong · Kaibo Zhang · Yingzhen Li · Jose Miguel Hernandez-Lobato
Aditya Bhaskara · Aravinda Kanchana Ruwanpathirana · Pruthuvi Maheshakya Wijewardena
Alessio Mazzetto · Cyrus Cousins · Dylan Sam · Stephen Bach · Eli Upfal
Zenna Tavares · James Koppel · Xin Zhang · Ria Das · Armando Solar-Lezama
Jungmin Kwon · Jeongseop Kim · Hyunseo Park · In Kwon Choi
Risheng Liu · Xuan Liu · Xiaoming Yuan · Shangzhi Zeng · Jin Zhang
Shangtong Zhang · Yi Wan · Richard Sutton · Shimon Whiteson
Guangyu Shen · Yingqi Liu · Guanhong Tao · Shengwei An · Qiuling Xu · Siyuan Cheng · Shiqing Ma · Xiangyu Zhang
Weizhen Qi · Yeyun Gong · Jian Jiao · Yu Yan · Weizhu Chen · Dayiheng Liu · Kewen Tang · Houqiang Li · Jiusheng Chen · Ruofei Zhang · Ming Zhou · Nan Duan
Mike Lewis · Shruti Bhosale · Tim Dettmers · Naman Goyal · Luke Zettlemoyer
Abhishek Kumar · Sunabha Chatterjee · Piyush Rai
Erik Bodin · Zhenwen Dai · Neill Campbell · Carl Henrik Ek
Natalia Martinez Gil · Martin Bertran · Afroditi Papadaki · Miguel Rodrigues · Guillermo Sapiro
Tian Qin · Tian-Zuo Wang · Zhi-Hua Zhou
Tony Z. Zhao · Eric Wallace · Shi Feng · Dan Klein · Sameer Singh
Charles Dickens · Connor Pryor · Eriq Augustine · Alexander Miller · Lise Getoor
Vincent Cohen-Addad · Silvio Lattanzi · Slobodan Mitrović · Ashkan Norouzi-Fard · Nikos Parotsidis · Jakub Tarnawski
Kasper Green Larsen · Rasmus Pagh · Jakub Tětek
Shanmukha Ramakrishna Vedantam · Arthur Szlam · Maximilian Nickel · Ari Morcos · Brenden Lake
Yang Lu · Wenbo Guo · Xinyu Xing · William Stafford Noble
Durmus Alp Emre Acar · Yue Zhao · Ruizhao Zhu · Ramon Matas · Matthew Mattina · Paul Whatmough · Venkatesh Saligrama
Hongyi Guo · Zuyue Fu · Zhuoran Yang · Zhaoran Wang
Tejas Kulkarni · Joonas Jälkö · Antti Koskela · Samuel Kaski · Antti Honkela
Dung Nguyen · Anil Vullikanti
Chunting Zhou · Xuezhe Ma · Paul Michel · Graham Neubig
Jonathan Crabbé · Mihaela van der Schaar
Liam Collins · Hamed Hassani · Aryan Mokhtari · Sanjay Shakkottai
Arkopal Dutt · Andrey Lokhov · Marc Vuffray · Sidhant Misra
Ziwei Ji · Nati Srebro · Matus Telgarsky
Chiranjib Bhattacharyya · Ravindran Kannan · Amit Kumar
Yogesh Dahiya · Fedor Fomin · Fahad Panolan · Kirill Simonov
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf
Atsushi Suzuki · Atsushi Nitanda · Jing Wang · Linchuan Xu · Kenji Yamanishi · Marc Cavazza
Kaizhi Qian · Yang Zhang · Shiyu Chang · Jinjun Xiong · Chuang Gan · David Cox · Mark Hasegawa-Johnson
Hunter Lang · David Sontag · Aravindan Vijayaraghavan
Yang Yongyi · Tang Liu · Yangkun Wang · Jinjing Zhou · Quan Gan · Zhewei Wei · Zheng Zhang · Zengfeng Huang · David Wipf
Santiago Zanella-Beguelin · Shruti Tople · Andrew Paverd · Boris Köpf
Liyang Liu · Shilong Zhang · Zhanghui Kuang · Aojun Zhou · Jing-Hao Xue · Xinjiang Wang · Yimin Chen · Wenming Yang · Qingmin Liao · Wayne Zhang
Laxman Dhulipala · David Eisenstat · Jakub Łącki · Vahab Mirrokni · Jessica Shi
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re
Nadine Chang · Zhiding Yu · Yu-Xiong Wang · Anima Anandkumar · Sanja Fidler · Jose Alvarez
Kieran Murphy · Carlos Esteves · Varun Jampani · Srikumar Ramalingam · Ameesh Makadia
Julian Katz-Samuels · Jifan Zhang · Lalit Jain · Kevin Jamieson
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li
Vincent Cohen-Addad · Rémi de Joannis de Verclos · Guillaume Lagarde
Jiaxiang Ren · Zijie Zhang · Jiayin Jin · Xin Zhao · Sixing Wu · Yang Zhou · Yelong Shen · Tianshi Che · Ruoming Jin · Dejing Dou
Amil Merchant · Luke Metz · Samuel Schoenholz · Ekin Dogus Cubuk
Jiaming Xu · Kuang Xu · Dana Yang
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang
Cheng Fu · Hanxian Huang · Xinyun Chen · Yuandong Tian · Jishen Zhao
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama
Branislav Kveton · Mikhail Konobeev · Manzil Zaheer · Chih-wei Hsu · Martin Mladenov · Craig Boutilier · Csaba Szepesvari
Thanh Lam · Nghia Hoang · Bryan Kian Hsiang Low · Patrick Jaillet
Achille Thin · Nikita Kotelevskii · Arnaud Doucet · Alain Durmus · Eric Moulines · Maxim Panov
Hugo Yèche · Gideon Dresdner · Francesco Locatello · Matthias Hüser · Gunnar Rätsch
Zeshan Hussain · Rahul G. Krishnan · David Sontag
Andrey Voynov · Stanislav Morozov · Artem Babenko
Eric Mitchell · Rafael Rafailov · Xue Bin Peng · Sergey Levine · Chelsea Finn
Xinwang Liu · Li Liu · Qing Liao · Siwei Wang · Yi Zhang · Wenxuan Tu · Chang Tang · Jiyuan Liu · En Zhu
Gang Qiao · Weijie Su · Li Zhang
Dorian Baudry · Yoan Russac · Olivier Cappé
Genevieve Flaspohler · Francesco Orabona · Judah Cohen · Soukayna Mouatadid · Miruna Oprescu · Paulo Orenstein · Lester Mackey
Zhihao Jiang · Pinyan Lu · Zhihao Gavin Tang · Yuhao Zhang
Moontae Lee · Sungjun Cho · Kun Dong · David Mimno · David Bindel
Sruthi Gorantla · Amit Jayant Deshpande · Anand Louis
Dorian Baudry · Romain Gautron · Emilie Kaufmann · Odalric-Ambrym Maillard
PEI-HUNG Chen · Wei Wei · Cho-Jui Hsieh · Bo Dai
Todd Huster · Jeremy Cohen · Zinan Lin · Kevin Chan · Charles Kamhoua · Nandi O. Leslie · Cho-Yu Chiang · Vyas Sekar
David Arbour · Drew Dimmery · Arjun Sondhi
Mark Nemecek · Ron Parr
Carl-Johann Simon-Gabriel · Noman Ahmed Sheikh · Andreas Krause
Peter Kairouz · Brendan McMahan · Shuang Song · Om Dipakbhai Thakkar · Abhradeep Guha Thakurta · Zheng Xu
Xiling Li · Rafael Dowsley · Martine De Cock
Honghua Zhang · Brendan Juba · Guy Van den Broeck
James Cheshire · Pierre Menard · Alexandra Carpentier
Vasileios Kalantzis · Georgios Kollias · Shashanka Ubaru · Athanasios N. Nikolakopoulos · Lior Horesh · Kenneth Clarkson
Matt Jordan · Alexandros Dimakis
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama
Haitian Sun · Patrick Verga · Bhuwan Dhingra · Ruslan Salakhutdinov · William Cohen
Yong Cheng · Wei Wang · Lu Jiang · Wolfgang Macherey
Oleh Rybkin · Kostas Daniilidis · Sergey Levine
Yifei Jiang · Yi Li · Yiming Sun · Jiaxin Wang · David Woodruff
Lorenz Richter · Leon Sallandt · Nikolas Nüsken
Mingkang Zhu · Tianlong Chen · Zhangyang “Atlas” Wang
Shuli Jiang · Dongyu Li · Irene Mengze Li · Arvind Mahankali · David Woodruff
Nian Si · Karthyek Murthy · Jose Blanchet · Viet Anh Nguyen
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha
Kaizhao Liang · Yibo Zhang · Boxin Wang · Zhuolin Yang · Sanmi Koyejo · Bo Li
Chengyi Wang · Yu Wu · Yao Qian · Kenichi Kumatani · Shujie Liu · Furu Wei · Michael Zeng · Xuedong Huang
Sara Sabour Rouh Aghdam · Andrea Tagliasacchi · Soroosh Yazdani · Geoffrey Hinton · David Fleet
Quoc Phong Nguyen · Zhongxiang Dai · Bryan Kian Hsiang Low · Patrick Jaillet
Hanwen Liu · Zhenyu Weng · Yuesheng Zhu
Zhanpeng Zeng · Yunyang Xiong · Sathya Ravi · Shailesh Acharya · Glenn Fung · Vikas Singh
Go to Event Page
Workshop

Challenges in Deploying and monitoring Machine Learning Systems

Alessandra Tosi · Nathan Korda · Michael A Osborne · Stephen Roberts · Andrei Paleyes · Fariba Yousefi
11:00 AM - 8:30 PM

Until recently, many industrial Machine Learning applications have been the remit of consulting academics, data scientists within larger companies, and a number of dedicated Machine Learning research labs within a few of the world’s most innovative tech companies. Over the last few years we have seen the dramatic rise of companies dedicated to providing Machine Learning software-as-a-service tools, with the aim of democratizing access to the benefits of Machine Learning. All these efforts have revealed major hurdles to ensuring the continual delivery of good performance from deployed Machine Learning systems. These hurdles range from challenges in MLOps, to fundamental problems with deploying certain algorithms, to solving the legal issues surrounding the ethics involved in letting algorithms make decisions for your business.

This workshop will invite papers related to the challenges in deploying and monitoring ML systems. It will encourage submission on subjects related to: MLOps for deployed ML systems; the ethics around deploying ML systems; useful tools and programming languages for deploying ML systems; specific challenges relating to deploying reinforcement learning in ML systems and performing continual learning and providing continual delivery in ML systems;
and finally data challenges for deployed ML systems.

We will also invite the submission of open problems and encourage the discussion (through two live panels) on topics related to the areas of: "Deploying machine learning applications in the legal system" and "Deploying machine learning on devices or constrained hardware".

These subjects represent a wealth of topical and high-impact issues for the community to work on.

... more
Workshop

INNF+: Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models

Chin-Wei Huang · David Krueger · Rianne Van den Berg · George Papamakarios · Ricky T. Q. Chen · Danilo J. Rezende
11:28 AM - 8:30 PM

Normalizing flows are explicit likelihood models (ELM) characterized by a flexible invertible reparameterization of high-dimensional probability distributions. Unlike other ELMs, they offer both exact and efficient likelihood computation and data generation. Since their recent introduction, flow-based models have seen a significant resurgence of interest in the machine learning community. As a result, powerful flow-based models have been developed, with successes in density estimation, variational inference, and generative modeling of images, audio and video.

As the field is moving forward, the main goal of the workshop is to consolidate recent progress and connect ideas from related fields. Over the past few years, we’ve seen that normalizing flows are deeply connected to latent variable models, autoregressive models, and more recently, diffusion-based generative models. This year, we would like to further push the forefront of these explicit likelihood models through the lens of invertible reparameterization. We encourage researchers to use these models in conjunction to exploit the their benefits at once, and to work together to resolve some common issues of likelihood-based methods, such as mis-calibration of out-of-distribution uncertainty.

... more
Workshop

Tackling Climate Change with Machine Learning

Hari Prasanna Das · Katarzyna Tokarska · Maria João Sousa · Meareg Hailemariam · David Rolnick · Xiaoxiang Zhu · Yoshua Bengio
2:00 PM - 2:00 AM

The focus of this workshop is on the use of machine learning to help in addressing climate change, encompassing mitigation efforts (reducing the severity of climate change), adaptation measures (preparing for unavoidable consequences), and climate science (our understanding of the climate and future climate predictions). Topics within the scope of this workshop include climate-relevant applications of machine learning to the power sector, buildings and transportation infrastructure, agriculture and land use, extreme event prediction, disaster response, climate policy, and climate finance. The goals of the workshop are: (1) to showcase high-impact applications of ML to climate change mitigation, adaptation, and climate science, (2) to demonstrate that the associated ML methods are interesting in their own right, (3) to encourage fruitful collaboration between the ML community and a diverse set of researchers and practitioners from climate change-related fields, and (4) to promote dialogue with decision-makers in the private and public sectors, ensuring that the works presented in this workshop have impact on the thoughtful deployment of ML in climate solutions. Building on our previous workshops in this series, this workshop will have a particular focus on ML for the assessment and implementation of objectives set under the Paris Agreement, though submitted works may be on any topic at the intersection of ML and climate change.

... more
Workshop

ICML Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI

Quanshi Zhang · Tian Han · Lixin Fan · Zhanxing Zhu · Hang Su · Ying Nian Wu
2:00 PM - 11:30 PM

The proposed workshop pays a special interests in theoretic foundations, limitations, and new application trends in the scope of XAI. These issues reflect new bottlenecks in the future development of XAI, for example: (1) no theoretic definition of XAI and no solid and widely-used formulation for even a specific explanation task. (2) No sophisticated formulation of the essence of ``semantics'' encoded in a DNN. (3) How to bridge the gap between connectionism and symbolism in AI research has not been sophisticatedly explored. (4) How to evaluate the correctness and trustworthiness of an explanation result is still an open problem. (5) How to bridge the intuitive explanation (e.g., the attribution/importance-based explanation) and a DNN's representation capacity (e.g., the generalization power) is still a significant challenge. (6) Using the explanation to guide the architecture design or substantially boost the performance of a DNN is a bottleneck. Therefore, this workshop aims to bring together researchers, engineers as well as industrial practitioners, who concern about the interpretability, safety, and reliability of artificial intelligence. In this workshop, we hope to use a broad discussion on the above bottleneck issues to explore new critical and constructive views of the future development of XAI. Research outcomes are also expected to profoundly influences critical industrial applications such as medical diagnosis, finance, and autonomous driving.

Accepted papers: https://arxiv.org/html/2107.08821

... more
Workshop

Theory and Foundation of Continual Learning

Thang Doan · Bogdan Mazoure · Amal Rannen Triki · Rahaf Aljundi · Vincenzo Lomonaco · Xu He · Arslan Chaudhry
2:00 PM - 8:40 PM

Machine learning systems are commonly applied to isolated tasks (such as image recognition or playing chess) or narrow domains (such as control over similar robotic bodies). It is further assumed that the learning system has simultaneous access to all annotated data points of the tasks at hand. In contrast, Continual Learning (CL), also referred to as Lifelong or Incremental Learning, studies the problem of learning from a stream of data from changing domains, each connected to a different learning task. The objective of CL is to quickly adapt to new situations or tasks by exploiting previously acquired knowledge, while protecting previous learning from being erased.

Significant advances have been made in CL over the past few years, mostly through empirical investigations and benchmarking. However, theoretical understanding is still lagging behind. For instance, while Catastrophic Forgetting (CF) is a recurring ineffectiveness that most works try to tackle, little understanding is provided in the literature from a theoretical point of view. Many real life applications share common assumptions and settings with CL, what are the convergence guarantees when deploying a certain method? If memory capacity is an important constraint for replay methods, how can we select the minimal examples such that CF is minimized? While answers to the questions above are key ingredients to design better heuristics, very little theoretical guidance is provided in the literature.

The aim of this workshop is to achieve an understanding of different components of continual learning to bridge the gap with empirical results. Furthermore, we are also interested in submissions that draw connections between Continual Learning and other areas, such as Neuroscience and Meta-learning.

For more info visit our workshop website

... more
Workshop

ICML 2021 Workshop on Unsupervised Reinforcement Learning

Feryal Behbahani · Joelle Pineau · Lerrel Pinto · Roberta Raileanu · Aravind Srinivas · Denis Yarats · Amy Zhang
2:45 PM - 11:30 PM

Unsupervised learning has begun to deliver on its promise in the recent past with tremendous progress made in the fields of natural language processing and computer vision whereby large scale unsupervised pre-training has enabled fine-tuning to downstream supervised learning tasks with limited labeled data. This is particularly encouraging and appealing in the context of reinforcement learning considering that it is expensive to perform rollouts in the real world with annotations either in the form of reward signals or human demonstrations. We therefore believe that a workshop in the intersection of unsupervised and reinforcement learning is timely and we hope to bring together researchers with diverse views on how to make further progress in this exciting and open-ended subfield.

... more
Workshop

Human-AI Collaboration in Sequential Decision-Making

Besmira Nushi · Adish Singla · Sebastian Tschiatschek
2:55 PM - 10:05 PM

A key challenge for the successful deployment of many real world human-facing automated sequential decision-making systems is the need for human-AI collaboration. Effective collaboration ensures that the complementary abilities and skills of the human-users and the AI system are leveraged to maximize utility. This is for instance important in applications such as autonomous driving, in which a human user’s skill might be required in safety critical situations, or virtual personal assistants, in which a human user can perform real-world physical interactions which the AI system cannot. Facilitating such collaboration requires cooperation, coordination, and communication, e.g., in the form of accountability, teaching interactions, provision of feedback, etc. Without effective human-AI collaboration, the utility of automated sequential decision-making systems can be severely limited. Thus there is a surge of interest in better facilitating human-AI collaboration in academia and industry. Most existing research has focussed only on basic approaches for human-AI collaboration with little focus on long-term interactions and the breadth needed for next-generation applications. In this workshop we bring together researchers to advance this important topic, focussing on the following three directions: (a) Accountability and trust; (b) Adaptive behavior for long-term collaboration; (c) Robust collaboration under mismatch.

... more
Workshop

ICML Workshop on Representation Learning for Finance and E-Commerce Applications

Senthil Kumar · Sameena Shah · Joan Bruna · Tom Goldstein · Erik Mueller · Oleg Rokhlenko · Hongxia Yang · Jianpeng Xu · Oluwatobi O Olabiyi · Charese Smiley · C. Bayan Bruss · Saurabh H Nagrecha · Svitlana Vyetrenko
2:55 PM - 11:05 PM

One of the fundamental promises of deep learning is its ability to build increasingly meaningful representations of data from complex but raw inputs. These techniques demonstrate remarkable efficacy on high dimensional data with unique proximity structures (image, natural language, graphs).

Not only are these types of data prevalent in financial services and e-commerce, but also they often capture extremely interesting aspects of social and economic behavior. For example, financial transactions and online purchases can be viewed as edges on graphs of economic activity. To date, these graphs are far less studied than social networks, though they provide a unique look at behavior, social structures, and risk. ​Meanwhile, activity or transaction sequences, usually determined by user sessions, can reflect the users’ long term and short term interests, which can be modeled by sequential models, and used to predict the user’s future activities. Although language models have been explored in session data modeling, how to re-use the representations learned from one job to another job effectively is still an open question.

Our goal is to bring together researchers from different domains to discuss the application of representation learning to financial services and e-commerce. For the first time, four major e-commerce companies (Amazon, Walmart, Alibaba and eBay) and two banks (JP Morgan and Capital One) have come together to organize this workshop along with researchers from academia. A shared goal across these industries and application areas is to transform large-scale representational data into tangible revenue for businesses. Towards this goal, our confirmed invited speakers will share diverse perspectives on ways that representation learning can be used to solve problems in financial services and e-commerce. This will also be a forum to share how research on financial services and e-commerce data provides unique insights into socio-economic behavior.

... more
Workshop

Reinforcement Learning for Real Life

Yuxi Li · Minmin Chen · Omer Gottesman · Lihong Li · Zongqing Lu · Rupam Mahmood · Niranjani Prasad · Zhiwei (Tony) Qin · Csaba Szepesvari · Matthew Taylor
3:00 PM - 7:00 AM

Reinforcement learning (RL) is a general learning, predicting, and decision making paradigm and applies broadly in many disciplines, including science, engineering and humanities. RL has seen prominent successes in many problems, such as games, robotics, recommender systems. However, applying RL in the real world remains challenging, and a natural question is:

Why isn’t RL used even more often and how can we improve this?

The main goals of the workshop are to: (1) identify key research problems that are critical for the success of real-world applications; (2) report progress on addressing these critical issues; and (3) have practitioners share their success stories of applying RL to real-world problems, and the insights gained from such applications.

We invite paper submissions successfully applying RL algorithms to real-life problems and/or addressing practically relevant RL issues. Our topics of interest are general, including (but not limited to): 1) practical RL algorithms, which covers all algorithmic challenges of RL, especially those that directly address challenges faced by real-world applications; 2) practical issues: generalization, sample efficiency, exploration, reward, scalability, model-based learning, prior knowledge, safety, accountability, interpretability, reproducibility, hyper-parameter tuning; and 3) applications.

We have 6 premier panel discussions and 70+ great papers/posters. Welcome!

... more
Workshop

8th ICML Workshop on Automated Machine Learning (AutoML 2021)

Gresa Shala · Frank Hutter · Joaquin Vanschoren · Marius Lindauer · Katharina Eggensperger · Colin White · Erin LeDell
3:00 PM - 10:30 PM

Machine learning (ML) has achieved considerable successes in recent years, but this success often relies on human experts, who construct appropriate features, design learning architectures, set their hyperparameters, and develop new learning algorithms. Driven by the demand for robust, off-the-shelf ML methods from an ever-growing community, the research area of AutoML targets the progressive automation of machine learning aiming to make effective methods available to everyone. Hence, the workshop targets a broad audience ranging from core ML researchers in different fields of ML connected to AutoML, such as neural architecture search (NAS), hyperparameter optimization, meta-learning, and learning-to-learn, to domain experts aiming to apply ML to new types of problems.

... more
Workshop

Uncertainty and Robustness in Deep Learning

Balaji Lakshminarayanan · Dan Hendrycks · Sharon Li · Jasper Snoek · Silvia Chiappa · Sebastian Nowozin · Thomas Dietterich
3:00 PM - 11:00 PM

There has been growing interest in ensuring that deep learning systems are robust and reliable. Challenges arise when models receive samples drawn from outside the training distribution. For example, a neural network tasked with classifying handwritten digits may assign high confidence predictions to cat images. Anomalies are frequently encountered when deploying ML models in the real world. Well-calibrated predictive uncertainty estimates are indispensable for many machine learning applications, such as self-driving vehicles and medical diagnosis systems. Generalization to unseen and worst-case inputs is also essential for robustness to distributional shift. In order to have ML models safely deployed in open environments, we must deepen technical understanding in the following areas:

(1) Learning algorithms that can detect changes in data distribution (e.g. out-of-distribution examples) and improve out-of-distribution generalization (e.g. temporal, geographical, hardware, adversarial shifts);
(2) Mechanisms to estimate and calibrate confidence produced by neural networks in typical and unforeseen scenarios;
(3) Guide learning towards an understanding of the underlying causal mechanisms that can guarantee robustness with respect to distribution shift.

In order to achieve these goals, it is critical to dedicate substantial effort on
(4) Creating benchmark datasets and protocols for evaluating model performance under distribution shift
(5) Studying key applications of robust and uncertainty-aware deep learning (e.g., computer vision, robotics, self-driving vehicles, medical imaging), as well as broader machine learning tasks.

This workshop will bring together researchers and practitioners from the machine learning communities to foster future collaborations. Our agenda will feature invited speakers, contributed talks, poster sessions in multiple time-zones and a panel discussion on fundamentally important directions for robust and reliable deep learning.

... more
Workshop

Interpretable Machine Learning in Healthcare

Yuyin Zhou · Xiaoxiao Li · Vicky Yao · Pengtao Xie · DOU QI · Nicha Dvornek · Julia Schnabel · Judy Wawira · Yifan Peng · Ronald Summers · Alan Karthikesalingam · Lei Xing · Eric Xing
3:15 PM - 11:45 PM

Applying machine learning (ML) in healthcare is gaining momentum rapidly. However, the black-box characteristics of existing ML approaches inevitably lead to less interpretability and verifiability in making clinical predictions. To enhance the interpretability of medical intelligence, it becomes critical to develop methodologies to explain predictions as these systems are pervasively being introduced to the healthcare domain, which requires a higher level of safety and security. Such methodologies would make medical decisions more trustworthy and reliable for physicians, which could facilitate the deployment ultimately. On the other hand, it is also essential to develop more interpretable and transparent ML systems. For instance, by exploiting structured knowledge or prior clinical information, one can design models to learn aspects more coherent with clinical reasoning. Also, it may help mitigate biases in the learning process, or identify more relevant variables for making medical decisions.

In this workshop, we aim to bring together researchers in ML, computer vision, healthcare, medicine, NLP, and clinical fields to facilitate discussions including related challenges, definition, formalisms, evaluation protocols regarding interpretable medical machine intelligence. Additionally, we will also introduce possible solutions such as logic and symbolic reasoning over medical knowledge graphs, uncertainty quantification, composition models, etc. We hope that the proposed workshop is fruitful in offering a step toward building autonomous clinical decision systems with a higher-level understanding of interpretability.

... more
Workshop

Theory and Practice of Differential Privacy

Rachel Cummings · Gautam Kamath
4:00 PM - 12:00 AM

Differential privacy is a promising approach to privacy-preserving data analysis. It has been the subject of a decade of intense scientific study, and has now been deployed in products at government agencies such as the U.S. Census Bureau and companies like Microsoft, Apple, and Google. MIT Technology Review named differential privacy one of 10 breakthrough technologies of 2020.
Since data privacy is a pervasive concern, differential privacy has been studied by researchers from many distinct communities, including machine learning, statistics, algorithms, computer security, cryptography, databases, data mining, programming languages, social sciences, and law. We believe that this combined effort across a broad spectrum of computer science is essential for differential privacy to realize its full potential. To this end, our workshop will stimulate discussion among participants about both the state-of-the-art in differential privacy and the future challenges that must be addressed to make differential privacy more practical.

... more
Social

Using Process Mining and Machine Learning to Optimize Business Processes in HealthCare, in this case, data will be used to show the various process mining approaches to optimize the healthcare processes using various algorithms and machine learning use integration with Process mining.

... more
Workshop

The Neglected Assumptions In Causal Inference

Niki Kilbertus · Lily Hu · Laura Balzer · Uri Shalit · Alexander D'Amour · Razieh Nabi
5:00 PM - 11:30 PM

As causality enjoys increasing attention in various areas of machine learning, this workshop turns the spotlight on the assumptions behind the successful application of causal inference techniques. It is well known that answering causal queries from observational data requires strong and sometimes untestable assumptions. On the theoretical side, a whole host of settings as been established in which causal effects are identifiable and consistently estimable under a set of by now considered "standard" assumptions. While these can be reasonable in specific scenarios, they were often at least partially motivated by rendering estimation theoretically feasible. Such assumptions tell us what we would need to assert about the data generating process in order to be able to answer causal queries. Unfortunately, in applications we often find them taken for granted as properties that can safely be assumed to hold without further scrutiny. This starts with fundamentally untestable assumptions such as the stable unit treatment value assumption or ignorability and continues to no interference, faithfulness, positivity or overlap, no unobserved confounding and even reaches blanket one-size-fits all assumptions on the linearity of structural equations or the additivity of noise. This situation may lead practitioners to either believe that well founded causal inference is unattainable altogether, or that established off-the-shelf methods can be trusted to deliver reliable causal estimates in virtually any situation. Similarly, as ideas from causality are increasingly picked up by researchers in deep-, reinforcement-, or meta-learning, there is a risk that the role of assumptions for causal inference gets lost in translation. One of the main goals of this workshop is to help the research community and practitioners understand the concrete challenges of trustworthy assumptions for effective causal inference.

... more
Workshop

Machine Learning for Data: Automated Creation, Privacy, Bias

Zhiting Hu · Li Erran Li · Willie Neiswanger · Benedikt Boecking · Yi Xu · Belinda Zeng
5:00 PM - 2:20 AM

As the use of machine learning (ML) becomes ubiquitous, there is a growing understanding and appreciation for the role that data plays for building successful ML solutions. Classical ML research has been primarily focused on learning algorithms and their guarantees. Recent progress has shown that data is playing an increasingly central role in creating ML solutions, such as the massive text data used for training powerful language models, (semi-)automatic engineering of weak supervision data that enables applications in few-labels settings, and various data augmentation and manipulation techniques that lead to performance boosts on many real world tasks. On the other hand, data is one of the main sources of security, privacy, and bias issues in deploying ML solutions in the real world. This workshop will focus on the new perspective of machine learning for data --- specifically how ML techniques can be used to facilitate and automate a range of data operations (e.g. ML-assisted labeling, synthesis, selection, augmentation), and the associated challenges of quality, security, privacy and fairness for which ML techniques can also enable solutions.

... more
Social

Amii Trivia Night

Destani Engel
11:00 PM - 12:30 AM

Join us for a virtual trivia night and an opportunity to learn more about the work we are doing at Amii! Teams will be assembled during the event and the winning team will walk away with a $25 gift card towards a celebratory meal from UberEATS.

... more