Skip to yearly menu bar Skip to main content


Poster
in
Workshop: Interpretable Machine Learning in Healthcare

Novel disease detection using ensembles with regularized disagreement

Alexandru Tifrea · Eric Stavarache · Fanny Yang


Abstract:

Automated medical diagnosis systems need to be able to recognize when new diseases emerge, that are not represented in the training data (ID). Even though current out-of-distribution (OOD) detection algorithms can successfully distinguish completely different data sets, they fail to reliably identify samples from novel classes, that are similar to the training data. We develop a new ensemble-based procedure that promotes model diversity and exploits regularization to limit disagreement to only OOD samples, using a batch containing an unknown mixture of ID and OOD data. We show that our procedure significantly outperforms state-of-the-art methods, including those that have access, during training, to data that is known to be OOD. We run extensive comparisons of our approach on a variety of novel-class detection scenarios, on standard image data sets as well as on new disease detection on medical image data sets.

Chat is not available.