Poster
in
Workshop: A Blessing in Disguise: The Prospects and Perils of Adversarial Machine Learning
Boosting Transferability of Targeted Adversarial Examples via Hierarchical Generative Networks
Xiao Yang · Yinpeng Dong · Tianyu Pang
Abstract:
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting. Though several methods have demonstrated impressive transferability of untargeted adversarial examples, targeted adversarial transferability is still challenging. In this paper, we develop a simple yet practical framework to efficiently craft targeted transfer-based adversarial examples. Specifically, we propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes by simply altering the class embedding and share a single backbone. Extensive experiments demonstrate that our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods --- it reaches an average success rate of 29.6\% against six diverse models based only on one substitute white-box model in the standard testing of NeurIPS 2017 competition, which outperforms the state-of-the-art gradient-based attack methods (with an average success rate of $<$2\%) by a large margin. Moreover, the proposed method is also more efficient beyond an order of magnitude than gradient-based methods.
Chat is not available.