Invited Talk
Workshop: Workshop on Computational Approaches to Mental Health @ ICML 2021

Employing Social Media and Machine Learning to Improve Mental Health: Harnessing the Potentials and Avoiding the Pitfalls

Munmun De Chaudhury


Social media data is being increasingly used to computationally learn about and infer the mental health states of individuals and populations. Despite being touted as a powerful means to shape interventions and impact mental health recovery, little do we understand about the theoretical, domain, and psychometric validity of this novel information source, or its underlying biases, when appropriated to augment conventionally gathered data, such as surveys and verbal self-reports. This talk presents a critical analytic perspective on the pitfalls of social media signals of mental health, especially when they are derived from “proxy” diagnostic indicators, often removed from the real-world context in which they are likely to be used. Then, to overcome these pitfalls, this talk presents results from two case studies, where machine learning algorithms to glean mental health insights from social media were developed in a context-sensitive and human-centered way, in collaboration with domain experts and stakeholders. The first of these case studies, a collaboration with a health provider, focuses on the individual-perspective, and reveals the ability and implications of using social media data of consented schizophrenia patients to forecast relapse and support clinical decision-making. Scaling up to populations, in collaboration with a federal organization and towards influencing public health policy, the second case study seeks to forecast nationwide rates of suicide fatalities using social media signals, in conjunction with health services data. The talk concludes with discussions of the path forward, emphasizing the need for a collaborative, multi-disciplinary research agenda while realizing the potential of social media data and machine learning in mental health -- one that incorporates methodological rigor, ethics, and accountability, all at once.