Tutorial
|
Mon 8:00
|
Bayesian Deep Learning and a Probabilistic Perspective of Model Construction
Andrew Wilson
|
|
Workshop
|
Fri 13:45
|
[Session 1] P#11 Modeling Brain Microarchitecture with Deep Representation Learning
|
|
Poster
|
Tue 8:00
|
Uncertainty-Aware Lookahead Factor Models for Quantitative Investing
Lakshay Chauhan · John Alberg · Zachary Lipton
|
|
Poster
|
Tue 7:00
|
Multigrid Neural Memory
Tri Huynh · Michael Maire · Matthew Walter
|
|
Poster
|
Thu 9:00
|
Video Prediction via Example Guidance
Jingwei Xu · Harry (Huazhe) Xu · Bingbing Ni · Xiaokang Yang · Trevor Darrell
|
|
Affinity Workshop
|
Mon 11:00
|
KutralNet: A Portable Deep Learning Model for Fire Recognition
Angel Ayala
|
|
Poster
|
Thu 17:00
|
Transformer Hawkes Process
Simiao Zuo · Haoming Jiang · Zichong Li · Tuo Zhao · Hongyuan Zha
|
|
Poster
|
Wed 16:00
|
Unsupervised Transfer Learning for Spatiotemporal Predictive Networks
Zhiyu Yao · Yunbo Wang · Mingsheng Long · Jianmin Wang
|
|
Poster
|
Wed 13:00
|
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Toth · Harald Oberhauser
|
|
Poster
|
Wed 8:00
|
Representing Unordered Data Using Complex-Weighted Multiset Automata
Justin DeBenedetto · David Chiang
|
|
Poster
|
Thu 7:00
|
Time-aware Large Kernel Convolutions
Vasileios Lioutas · Yuhong Guo
|
|
Workshop
|
Fri 7:50
|
Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models
Lasse F. Wolff Anthony
|
|