Tutorial
|
Mon 8:00
|
Bayesian Deep Learning and a Probabilistic Perspective of Model Construction
Andrew Wilson
|
|
Affinity Workshop
|
Mon 11:35
|
Breakout Session 4.9: Uncertainty Estimation in Bayesian Deep Learning
|
|
Poster
|
Tue 14:00
|
Thompson Sampling via Local Uncertainty
Zhendong Wang · Mingyuan Zhou
|
|
Poster
|
Tue 8:00
|
NADS: Neural Architecture Distribution Search for Uncertainty Awareness
Randy Ardywibowo · Shahin Boluki · Xinyu Gong · Zhangyang “Atlas” Wang · Xiaoning Qian
|
|
Poster
|
Thu 6:00
|
Improving Robustness of Deep-Learning-Based Image Reconstruction
Ankit Raj · Yoram Bresler · Bo Li
|
|
Poster
|
Tue 9:00
|
Source Separation with Deep Generative Priors
Vivek Jayaram · John Thickstun
|
|
Poster
|
Tue 13:00
|
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Joost van Amersfoort · Lewis Smith · Yee-Whye Teh · Yarin Gal
|
|
Poster
|
Wed 10:00
|
Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts?
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal
|
|
Poster
|
Tue 9:00
|
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel Brown · Russell Coleman · Ravi Srinivasan · Scott Niekum
|
|
Poster
|
Wed 13:00
|
Bayesian Learning from Sequential Data using Gaussian Processes with Signature Covariances
Csaba Toth · Harald Oberhauser
|
|
Poster
|
Thu 14:00
|
Training Binary Neural Networks using the Bayesian Learning Rule
Xiangming Meng · Roman Bachmann · Mohammad Emtiyaz Khan
|
|
Poster
|
Tue 7:00
|
Normalized Flat Minima: Exploring Scale Invariant Definition of Flat Minima for Neural Networks Using PAC-Bayesian Analysis
Yusuke Tsuzuku · Issei Sato · Masashi Sugiyama
|
|