Poster
A Sequential Self Teaching Approach for Improving Generalization in Sound Event Recognition
Anurag Kumar · Vamsi Krishna Ithapu
Keywords: [ Speech Processing ] [ Transfer and Multitask Learning ] [ Algorithms ] [ Applications - Language, Speech and Dialog ]
An important problem in machine auditory perception is to recognize and detect sound events. In this paper, we propose a sequential self-teaching approach to learn sounds. Our main proposition is that it is harder to learn sounds in adverse situations such as from weakly labeled and/or noisy labeled data, and in these situations a single stage of learning is not sufficient. Our proposal is a sequential stage-wise learning process that improves generalization capabilities of a given modeling system. We justify this method via technical results and on Audioset, the largest sound events dataset, our sequential learning approach can lead to up to 9% improvement in performance. A comprehensive evaluation also shows that the method leads to improved transferability of knowledge from previously trained models, thereby leading to improved generalization capabilities on transfer learning tasks.