Poster

Kernel interpolation with continuous volume sampling

Ayoub Belhadji · Rémi Bardenet · Pierre Chainais

Keywords: [ Kernel Methods ] [ Monte Carlo Methods ] [ Non-parametric Methods ] [ General Machine Learning Techniques ]

[ Abstract ] [ Join Zoom
Please do not share or post zoom links

Abstract:

A fundamental task in kernel methods is to pick nodes and weights, so as to approximate a given function from an RKHS by the weighted sum of kernel translates located at the nodes. This is the crux of kernel density estimation, kernel quadrature, or interpolation from discrete samples. Furthermore, RKHSs offer a convenient mathematical and computational framework. We introduce and analyse continuous volume sampling (VS), the continuous counterpart -for choosing node locations- of a discrete distribution introduced in (Deshpande & Vempala, 2006). Our contribution is theoretical: we prove almost optimal bounds for interpolation and quadrature under VS. While similar bounds already exist for some specific RKHSs using ad-hoc node constructions, VS offers bounds that apply to any Mercer kernel and depend on the spectrum of the associated integration operator. We emphasize that, unlike previous randomized approaches that rely on regularized leverage scores or determinantal point processes, evaluating the pdf of VS only requires pointwise evaluations of the kernel. VS is thus naturally amenable to MCMC samplers.

Chat is not available.