Skip to yearly menu bar Skip to main content


Identifying the Reward Function by Anchor Actions

Sinong Geng · Houssam Nassif · Charlie Manzanares · Max Reppen · Ronnie Sircar

Keywords: [ Reinforcement Learning ] [ Reinforcement Learning Theory ] [ Reinforcement Learning - General ]

Abstract: We propose a reward function estimation framework for inverse reinforcement learning with deep energy-based policies. We name our method PQR, as it sequentially estimates the Policy, the $Q$-function, and the Reward function. PQR does not assume that the reward solely depends on the state, instead it allows for a dependency on the choice of action. Moreover, PQR allows for stochastic state transitions. To accomplish this, we assume the existence of one anchor action whose reward is known, typically the action of doing nothing, yielding no reward. We present both estimators and algorithms for the PQR method. When the environment transition is known, we prove that the PQR reward estimator uniquely recovers the true reward. With unknown transitions, we bound the estimation error of PQR. Finally, the performance of PQR is demonstrated by synthetic and real-world datasets.

Chat is not available.