Skip to yearly menu bar Skip to main content


Gamification of Pure Exploration for Linear Bandits

Rémy Degenne · Pierre Menard · Xuedong Shang · Michal Valko

Keywords: [ Game Theory and Mechanism Design ] [ Statistical Learning Theory ] [ Online Learning / Bandits ] [ Online Learning, Active Learning, and Bandits ]


We investigate an active \emph{pure-exploration} setting, that includes \emph{best-arm identification}, in the context of \emph{linear stochastic bandits}. While asymptotically optimal algorithms exist for standard \emph{multi-armed bandits}, the existence of such algorithms for the best-arm identification in linear bandits has been elusive despite several attempts to address it. First, we provide a thorough comparison and new insight over different notions of optimality in the linear case, including G-optimality, transductive optimality from optimal experimental design and asymptotic optimality. Second, we design the first asymptotically optimal algorithm for fixed-confidence pure exploration in linear bandits. As a consequence, our algorithm naturally bypasses the pitfall caused by a simple but difficult instance, that most prior algorithms had to be engineered to deal with explicitly. Finally, we avoid the need to fully solve an optimal design problem by providing an approach that entails an efficient implementation.

Chat is not available.