Skip to yearly menu bar Skip to main content


Poster

Generative Flows with Matrix Exponential

Changyi Xiao · Ligang Liu

Keywords: [ Deep Learning - Generative Models and Autoencoders ] [ Unsupervised Learning ] [ Deep Generative Models ]


Abstract:

Generative flows models enjoy the properties of tractable exact likelihood and efficient sampling, which are composed of a sequence of invertible functions. In this paper, we incorporate matrix exponential into generative flows. Matrix exponential is a map from matrices to invertible matrices, this property is suitable for generative flows. Based on matrix exponential, we propose matrix exponential coupling layers that are a general case of affine coupling layers and matrix exponential invertible 1 x 1 convolutions that do not collapse during training. And we modify the networks architecture to make training stable and significantly speed up the training process. Our experiments show that our model achieves great performance on density estimation amongst generative flows models.

Chat is not available.