Poster
Spread Divergence
Mingtian Zhang · Peter Hayes · Thomas Bird · Raza Habib · David Barber
Keywords: [ Approximate Inference ] [ Generative Models ] [ Unsupervised Learning ] [ Unsupervised and Semi-supervised Learning ]
Abstract:
For distributions and with different supports or undefined densities, the divergence may not exist. We define a Spread Divergence on modified and and describe sufficient conditions for the existence of such a divergence. We demonstrate how to maximize the discriminatory power of a given divergence by parameterizing and learning the spread. We also give examples of using a Spread Divergence to train implicit generative models, including linear models (Independent Components Analysis) and non-linear models (Deep Generative Networks).
Chat is not available.