Poster

Convolutional Kernel Networks for Graph-Structured Data

Dexiong Chen · Laurent Jacob · Julien Mairal

Keywords: [ Kernel Methods ] [ Supervised Learning ] [ General Machine Learning Techniques ]

Abstract:

We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves state-of-the-art performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN.

Chat is not available.