Poster

Multinomial Logit Bandit with Low Switching Cost

Kefan Dong · Yingkai Li · Qin Zhang · Yuan Zhou

Keywords: [ Online Learning / Bandits ] [ Online Learning, Active Learning, and Bandits ]

[ Abstract ]
Thu 16 Jul 5 p.m. PDT — 5:45 p.m. PDT
Fri 17 Jul 4 a.m. PDT — 4:45 a.m. PDT

Abstract: We study multinomial logit bandit with limited adaptivity, where the algorithms change their exploration actions as infrequently as possible when achieving almost optimal minimax regret. We propose two measures of adaptivity: the assortment switching cost and the more fine-grained item switching cost. We present an anytime algorithm (AT-DUCB) with $O(N \log T)$ assortment switches, almost matching the lower bound $\Omega(\frac{N \log T}{ \log \log T})$. In the fixed-horizon setting, our algorithm FH-DUCB incurs $O(N \log \log T)$ assortment switches, matching the asymptotic lower bound. We also present the ESUCB algorithm with item switching cost $O(N \log^2 T)$.

Chat is not available.