Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization

GEOFFREY Negiar, Gideon Dresdner, Alicia Yi-Ting Tsai, Laurent El Ghaoui, Francesco Locatello, Robert Freund, Fabian Pedregosa,

Abstract Paper

Please do not share or post zoom links

Abstract:

We propose a novel Stochastic Frank-Wolfe (a. k. a. conditional gradient) algorithm for constrained smooth finite-sum minimization with a generalized linear prediction/structure. This class of problems includes empirical risk minimization with sparse, low-rank, or other structured constraints. The proposed method is simple to implement, does not require step-size tuning, and has a constant per-iteration cost that is independent of the dataset size. Furthermore, as a byproduct of the method we obtain a stochastic estimator of the Frank-Wolfe gap that can be used as a stopping criterion. Depending on the setting, the proposed method matches or improves on the best computational guarantees for Stochastic Frank-Wolfe algorithms. Benchmarks on several datasets highlight different regimes in which the proposed method exhibits a faster empirical convergence than related methods. Finally, we provide an implementation of all considered methods in an open-source package.

Chat is not available.