Privately Learning Markov Random Fields

Huanyu Zhang · Gautam Kamath · Janardhan Kulkarni · Steven Wu

Keywords: [ Graphical Models ] [ Information Theory and Estimation ] [ Privacy-preserving Statistics and Machine Learning ] [ Statistical Learning Theory ]

Abstract [ Join Zoom ]
[ Slides
Please do not share or post zoom links


We consider the problem of learning Markov Random Fields (including the prototypical example, the Ising model) under the constraint of differential privacy. Our learning goals include both \emph{structure learning}, where we try to estimate the underlying graph structure of the model, as well as the harder goal of \emph{parameter learning}, in which we additionally estimate the parameter on each edge. We provide algorithms and lower bounds for both problems under a variety of privacy constraints -- namely pure, concentrated, and approximate differential privacy. While non-privately, both learning goals enjoy roughly the same complexity, we show that this is not the case under differential privacy. In particular, only structure learning under approximate differential privacy maintains the non-private logarithmic dependence on the dimensionality of the data, while a change in either the learning goal or the privacy notion would necessitate a polynomial dependence. As a result, we show that the privacy constraint imposes a strong separation between these two learning problems in the high-dimensional data regime.

Live content is unavailable. Are you logged in?