Schedule Mon Tue Wed Thu Fri Sat

Tuesday July 14th

Invited Talk: Lester Mackey

Doing Some Good with Machine Learning

Photo of Lester Mackey

Lester Mackey

This is the story of my assorted attempts to do some good with machine learning. Through its telling, I’ll highlight several models of organizing social good efforts, describe half a dozen social good problems that would benefit from our community's attention, and present both resources and challenges for those looking to do some good with ML.


     Ricard Gavalda
 Photo of Ricard Gavalda
 Carla Gomes
Photo of Carla Gomes
Rashida Richardson
   Photo of Rashida Richardson

Speaker Bio

Lester Mackey is a machine learning researcher at Microsoft Research, where he develops new tools, models, and theory for large-scale learning tasks driven by applications from healthcare, climate, recommender systems, and the social good. Lester moved to Microsoft from Stanford University, where he was an assistant professor of Statistics and (by courtesy) of Computer Science. He earned his PhD in Computer Science and MA in Statistics from UC Berkeley and his BSE in Computer Science from Princeton University. He co-organized the second place team in the $1M Netflix Prize competition for collaborative filtering, won the $50K Prize4Life ALS disease progression prediction challenge, won prizes for temperature and precipitation forecasting in the yearlong real-time $800K Subseasonal Climate Forecast Rodeo, and received a best student paper award at the International Conference on Machine Learning.

Lester Mackey


Lester Mackey is a machine learning researcher at Microsoft Research, where he develops new tools, models, and theory for large-scale learning tasks driven by applications from healthcare, climate, recommender systems, and the social good. Lester moved to Microsoft from Stanford University, where he was an assistant professor of Statistics and (by courtesy) of Computer Science. He earned his PhD in Computer Science and MA in Statistics from UC Berkeley and his BSE in Computer Science from Princeton University. He co-organized the second place team in the \$1M. Netflix Prize competition for collaborative filtering, won the \$50K Prise4Life ALS disease progression prediction challenge, won prizes for temperature and precipitation forecasting in the yearlong real-time \$800K Subseasonal Climate Forecast Rodeo, and received a best student paper award at the International Conference on Machine Learning.

Poster Session 1 Tue 14 Jul 07:00 a.m.  

From Importance Sampling to Doubly Robust Policy Gradient
Jiawei Huang, Nan Jiang

We show that on-policy policy gradient (PG) and its variance reduction variants can be derived by taking finite-difference of function evaluations supplied by estimators from the importance sampling (IS) family for off-policy evaluation (OPE). Starting from the doubly robust (DR) estimator (Jiang & Li, 2016), we provide a simple derivation of a very general and flexible form of PG, which subsumes the state-of-the-art variance reduction technique (Cheng et al., 2019) as its special case and immediately hints at further variance reduction opportunities overlooked by existing literature. We analyze the variance of the new DR-PG estimator, compare it to existing methods as well as the Cramer-Rao lower bound of policy gradient, and empirically show its effectiveness.

All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans, Vaden Masrani, Frank Wood, Greg Ver Steeg, Aram Galstyan

The recently proposed Thermodynamic Variational Objective (TVO) leverages thermodynamic integration to provide a family of variational inference objectives, which both tighten and generalize the ubiquitous Evidence Lower Bound (ELBO). However, the tightness of TVO bounds was not previously known, an expensive grid search was used to choose a ``schedule'' of intermediate distributions, and model learning suffered with ostensibly tighter bounds. In this work, we propose an exponential family interpretation of the geometric mixture curve underlying the TVO and various path sampling methods, which allows us to characterize the gap in TVO likelihood bounds as a sum of KL divergences. We propose to choose intermediate distributions using equal spacing in the moment parameters of our exponential family, which matches grid search performance and allows the schedule to adaptively update over the course of training. Finally, we derive a doubly reparameterized gradient estimator which improves model learning and allows the TVO to benefit from more refined bounds. To further contextualize our contributions, we provide a unified framework for understanding thermodynamic integration and the TVO using Taylor series remainders.

ControlVAE: Controllable Variational Autoencoder
Huajie Shao, Shuochao Yao, Dachun Sun, Aston Zhang, Shengzhong Liu, Dongxin Liu, Jun Wang, Tarek Abdelzaher

Variational Autoencoders (VAE) and their variants have been widely used in a variety of applications, such as dialog generation, image generation and disentangled representation learning. However, the existing VAE models may suffer from KL vanishing in language modeling and low reconstruction quality for disentangling. To address these issues, we propose a novel controllable variational autoencoder framework, ControlVAE, that combines a controller, inspired by automatic control theory, with the basic VAE to improve the performance of resulting generative models. Specifically, we design a new non-linear PI controller, a variant of the proportional-integral-derivative (PID) control, to automatically tune the hyperparameter (weight) added in the VAE objective using the output KL-divergence as feedback during model training. The framework is evaluated using three applications; namely, language modeling, disentangled representation learning, and image generation. The results show that ControlVAE can achieve much better reconstruction quality than the competitive methods for the comparable disentanglement performance. For language modelling, it not only averts the KL-vanishing, but also improves the diversity of generated text. Finally, we also demonstrate that ControlVAE improves the reconstruction quality for image generation compared to the original VAE.

Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi, Natalie Frank, Mehryar Mohri
Adversarial or test time robustness measures the susceptibility of a classifier to perturbations to the test input. While there has been a flurry of recent work on designing defenses against such perturbations, the theory of adversarial robustness is not well understood. In order to make progress on this, we focus on the problem of understanding generalization in adversarial settings, via the lens of Rademacher complexity. We give upper and lower bounds for the adversarial empirical Rademacher complexity of linear hypotheses with adversarial perturbations measured in $l_r$-norm for an arbitrary $r \geq 1$. We then extend our analysis to provide Rademacher complexity lower and upper bounds for a single ReLU unit. Finally, we give adversarial Rademacher complexity bounds for feed-forward neural networks with one hidden layer.
Efficient Domain Generalization via Common-Specific Low-Rank Decomposition
Vihari Piratla, Praneeth Netrapalli, Sunita Sarawagi

Domain generalization refers to the task of training a model which generalizes to new domains that are not seen during training. We present CSD (Common Specific Decomposition), for this setting, which jointly learns a common component (which generalizes to new domains) and a domain specific component (which overfits on training domains). The domain specific components are discarded after training and only the common component is retained. The algorithm is extremely simple and involves only modifying the final linear classification layer of any given neural network architecture. We present a principled analysis to understand existing approaches, provide identifiability results of CSD, and study the effect of low-rank on domain generalization. We show that CSD either matches or beats state of the art approaches for domain generalization based on domain erasure, domain perturbed data augmentation, and meta-learning. Further diagnostics on rotated MNIST, where domains are interpretable, confirm the hypothesis that CSD successfully disentangles common and domain specific components and hence leads to better domain generalization; moreover, our code and dataset are publicly available at the following URL: \url{https://github.com/vihari/csd}.

A Simple Framework for Contrastive Learning of Visual Representations
Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton

This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

Fast and Private Submodular and $k$-Submodular Functions Maximization with Matroid Constraints
Akbar Rafiey, Yuichi Yoshida
The problem of maximizing nonnegative monotone submodular functions under a certain constraint has been intensively studied in the last decade, and a wide range of efficient approximation algorithms have been developed for this problem. Many machine learning problems, including data summarization and influence maximization, can be naturally modeled as the problem of maximizing monotone submodular functions. However, when such applications involve sensitive data about individuals, their privacy concerns should be addressed. In this paper, we study the problem of maximizing monotone submodular functions subject to matroid constraints in the framework of differential privacy. We provide $(1-\frac{1}{\mathrm{e}})$-approximation algorithm which improves upon the previous results in terms of approximation guarantee. This is done with an almost cubic number of function evaluations in our algorithm. Moreover, we study $k$-submodularity, a natural generalization of submodularity. We give the first $\frac{1}{2}$-approximation algorithm that preserves differential privacy for maximizing monotone $k$-submodular functions subject to matroid constraints. The approximation ratio is asymptotically tight and is obtained with an almost linear number of function evaluations.
Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting
Nic Dalmasso, Rafael Izbicki, Ann Lee

Parameter estimation, statistical tests and confidence sets are the cornerstones of classical statistics that allow scientists to make inferences about the underlying process that generated the observed data. A key question is whether one can still construct hypothesis tests and confidence sets with proper coverage and high power in a so-called likelihood-free inference (LFI) setting; that is, a setting where the likelihood is not explicitly known but one can forward-simulate observable data according to a stochastic model. In this paper, we present ACORE (Approximate Computation via Odds Ratio Estimation), a frequentist approach to LFI that first formulates the classical likelihood ratio test (LRT) as a parametrized classification problem, and then uses the equivalence of tests and confidence sets to build confidence regions for parameters of interest. We also present a goodness-of-fit procedure for checking whether the constructed tests and confidence regions are valid. ACORE is based on the key observation that the LRT statistic, the rejection probability of the test, and the coverage of the confidence set are conditional distribution functions which often vary smoothly as a function of the parameters of interest. Hence, instead of relying solely on samples simulated at fixed parameter settings (as is the convention in …

Laplacian Regularized Few-Shot Learning
Imtiaz Ziko, Jose Dolz, Eric Granger, Ismail Ben Ayed

We propose a transductive Laplacian-regularized inference for few-shot tasks. Given any feature embedding learned from the base classes, we minimize a quadratic binary-assignment function containing two terms: (1) a unary term assigning query samples to the nearest class prototype, and (2) a pairwise Laplacian term encouraging nearby query samples to have consistent label assignments. Our transductive inference does not re-train the base model, and can be viewed as a graph clustering of the query set, subject to supervision constraints from the support set. We derive a computationally efficient bound optimizer of a relaxation of our function, which computes independent (parallel) updates for each query sample, while guaranteeing convergence. Following a simple cross-entropy training on the base classes, and without complex meta-learning strategies, we conducted comprehensive experiments over five few-shot learning benchmarks. Our LaplacianShot consistently outperforms state-of-the-art methods by significant margins across different models, settings, and data sets. Furthermore, our transductive inference is very fast, with computational times that are close to inductive inference, and can be used for large-scale few-shot tasks.

Self-Concordant Analysis of Frank-Wolfe Algorithms
Pavel Dvurechenskii, Petr Ostroukhov, Kamil Safin, Shimrit Shtern, Mathias Staudigl

Projection-free optimization via different variants of the Frank-Wolfe (FW), a.k.a. Conditional Gradient method has become one of the cornerstones in optimization for machine learning since in many cases the linear minimization oracle is much cheaper to implement than projections and some sparsity needs to be preserved. In a number of applications, e.g. Poisson inverse problems or quantum state tomography, the loss is given by a self-concordant (SC) function having unbounded curvature, implying absence of theoretical guarantees for the existing FW methods. We use the theory of SC functions to provide a new adaptive step size for FW methods and prove global convergence rate O(1/k) after k iterations. If the problem admits a stronger local linear minimization oracle, we construct a novel FW method with linear convergence rate for SC functions.

Learning with Multiple Complementary Labels
LEI FENG, Takuo Kaneko, Bo Han, Gang Niu, Bo An, Masashi Sugiyama

A complementary label (CL) simply indicates an incorrect class of an example, but learning with CLs results in multi-class classifiers that can predict the correct class. Unfortunately, the problem setting only allows a single CL for each example, which notably limits its potential since our labelers may easily identify multiple CLs (MCLs) to one example. In this paper, we propose a novel problem setting to allow MCLs for each example and two ways for learning with MCLs. In the first way, we design two wrappers that decompose MCLs into many single CLs, so that we could use any method for learning with CLs. However, the supervision information that MCLs hold is conceptually diluted after decomposition. Thus, in the second way, we derive an unbiased risk estimator; minimizing it processes each set of MCLs as a whole and possesses an estimation error bound. We further improve the second way into minimizing properly chosen upper bounds. Experiments show that the former way works well for learning with MCLs but the latter is even better.

Mutual Transfer Learning for Massive Data
Ching-Wei Cheng, Xingye Qiao, Guang Cheng

In the transfer learning problem, the target and the source data domains are typically known. In this article, we study a new paradigm called mutual transfer learning where among many heterogeneous data domains, every data domain could potentially be the target of interest, and it could also be a useful source to help the learning in other data domains. However, it is important to note that given a target not every data domain can be a successful source; only data sets that are similar enough to be thought as from the same population can be useful sources for each other. Under this mutual learnability assumption, a confidence distribution fusion approach is proposed to recover the mutual learnability relation in the transfer learning regime. Our proposed method achieves the same oracle statistical inferential accuracy as if the true learnability structure were known. It can be implemented in an efficient parallel fashion to deal with large-scale data. Simulated and real examples are analyzed to illustrate the usefulness of the proposed method.

Improving Generative Imagination in Object-Centric World Models
Zhixuan Lin, Yi-Fu Wu, Skand Peri, Bofeng Fu, Jindong Jiang, Sungjin Ahn

The remarkable recent advances in object-centric generative world models raise a few questions. First, while many of the recent achievements are indispensable for making a general and versatile world model, it is quite unclear how these ingredients can be integrated into a unified framework. Second, despite using generative objectives, abilities for object detection and tracking are mainly investigated, leaving the crucial ability of temporal imagination largely under question. Third, a few key abilities for more faithful temporal imagination such as multimodal uncertainty and situation-awareness are missing. In this paper, we introduce Generative Structured World Models (G-SWM). The G-SWM achieves the versatile world modeling not only by unifying the key properties of previous models in a principled framework but also by achieving two crucial new abilities, multimodal uncertainty and situation-awareness. Our thorough investigation on the temporal generation ability in comparison to the previous models demonstrates that G-SWM achieves the versatility with the best or comparable performance for all experiment settings including a few complex settings that have not been tested before. https://sites.google.com/view/gswm

Evaluating the Performance of Reinforcement Learning Algorithms
Scott Jordan, Yash Chandak, Daniel Cohen, Mengxue Zhang, Philip Thomas

Performance evaluations are critical for quantifying algorithmic advances in reinforcement learning. Recent reproducibility analyses have shown that reported performance results are often inconsistent and difficult to replicate. In this work, we argue that the inconsistency of performance stems from the use of flawed evaluation metrics. Taking a step towards ensuring that reported results are consistent, we propose a new comprehensive evaluation methodology for reinforcement learning algorithms that produces reliable measurements of performance both on a single environment and when aggregated across environments. We demonstrate this method by evaluating a broad class of reinforcement learning algorithms on standard benchmark tasks.

Individual Fairness for k-Clustering
Sepideh Mahabadi, Ali Vakilian
We give a local search based algorithm for $k$-median and $k$-means (and more generally for any $k$-clustering with $\ell_p$ norm cost function) from the perspective of individual fairness. More precisely, for a point $x$ in a point set $P$ of size $n$, let $r(x)$ be the minimum radius such that the ball of radius $r(x)$ centered at $x$ has at least $n/k$ points from $P$. Intuitively, if a set of $k$ random points are chosen from $P$ as centers, every point $x\in P$ expects to have a center within radius $r(x)$. An individually fair clustering provides such a guarantee for every point $x\in P$. This notion of fairness was introduced in [Jung et al., 2019] where they showed how to get an approximately feasible $k$-clustering with respect to this fairness condition. In this work, we show how to get an approximately \emph{optimal} such fair $k$-clustering. The $k$-median ($k$-means) cost of our solution is within a constant factor of the cost of an optimal fair $k$-clustering, and our solution approximately satisfies the fairness condition (also within a constant factor).
Familywise Error Rate Control by Interactive Unmasking
Boyan Duan, Aaditya Ramdas, Larry Wasserman

We propose a method for multiple hypothesis testing with familywise error rate (FWER) control, called the i-FWER test. Most testing methods are predefined algorithms that do not allow modifications after observing the data. However, in practice, analysts tend to choose a promising algorithm after observing the data; unfortunately, this violates the validity of the conclusion. The i-FWER test allows much flexibility: a human (or a computer program acting on the human's behalf) may adaptively guide the algorithm in a data-dependent manner. We prove that our test controls FWER if the analysts adhere to a particular protocol of masking and unmasking. We demonstrate via numerical experiments the power of our test under structured non-nulls, and then explore new forms of masking.

Data Amplification: Instance-Optimal Property Estimation
Yi Hao, Alon Orlitsky
The best-known and most commonly used technique for distribution-property estimation uses a plug-in estimator, with empirical frequency replacing the underlying distribution. We present novel linear-time-computable estimators that significantly ``amplify'' the effective amount of data available. For a large variety of distribution properties including four of the most popular ones and for every underlying distribution, they achieve the accuracy that the empirical-frequency plug-in estimators would attain using a logarithmic-factor more samples. Specifically, for Shannon entropy and a broad class of Lipschitz properties including the $L_1$ distance to a fixed distribution, the new estimators use $n$ samples to achieve the accuracy attained by the empirical estimators with $n\log n$ samples. For support-size and coverage, the new estimators use $n$ samples to achieve the performance of empirical frequency with sample size $n$ times the logarithm of the property value. Significantly strengthening the traditional min-max formulation, these results hold not only for the worst distributions, but for each and every underlying distribution. Furthermore, the logarithmic amplification factors are optimal. Experiments on a wide variety of distributions show that the new estimators outperform the previous state-of-the-art estimators designed for each specific property.
Private Reinforcement Learning with PAC and Regret Guarantees
Giuseppe Vietri, Borja de Balle Pigem, Akshay Krishnamurthy, Steven Wu

Motivated by high-stakes decision-making domains like personalized medicine where user information is inherently sensitive, we design privacy preserving exploration policies for episodic reinforcement learning (RL). We first provide a meaningful privacy formulation using the notion of joint differential privacy (JDP)--a strong variant of differential privacy for settings where each user receives their own sets of output (e.g., policy recommendations). We then develop a private optimism-based learning algorithm that simultaneously achieves strong PAC and regret bounds, and enjoys a JDP guarantee. Our algorithm only pays for a moderate privacy cost on exploration: in comparison to the non-private bounds, the privacy parameter only appears in lower-order terms. Finally, we present lower bounds on sample complexity and regret for reinforcement learning subject to JDP.

Distance Metric Learning with Joint Representation Diversification
Xu Chu, Yang Lin, Yasha Wang, Xiting Wang, Hailong Yu, Xin Gao, Qi Tong

Distance metric learning (DML) is to learn a representation space equipped with a metric, such that similar examples are closer than dissimilar examples concerning the metric. The recent success of DNNs motivates many DML losses that encourage the intra-class compactness and inter-class separability. The trade-off between inter-class compactness and inter-class separability shapes the DML representation space by determining how much information of the original inputs to retain. In this paper, we propose a Distance Metric Learning with Joint Representation Diversification (JRD) that allows a better balancing point between intra-class compactness and inter-class separability. Specifically, we propose a Joint Representation Similarity regularizer that captures different abstract levels of invariant features and diversifies the joint distributions of representations across multiple layers. Experiments on three deep DML benchmark datasets demonstrate the effectiveness of the proposed approach.

LEEP: A New Measure to Evaluate Transferability of Learned Representations
Cuong Nguyen, Tal Hassner, Matthias W Seeger, Cedric Archambeau

We introduce a new measure to evaluate the transferability of representations learned by classifiers. Our measure, the Log Expected Empirical Prediction (LEEP), is simple and easy to compute: when given a classifier trained on a source data set, it only requires running the target data set through this classifier once. We analyze the properties of LEEP theoretically and demonstrate its effectiveness empirically. Our analysis shows that LEEP can predict the performance and convergence speed of both transfer and meta-transfer learning methods, even for small or imbalanced data. Moreover, LEEP outperforms recently proposed transferability measures such as negative conditional entropy and H scores. Notably, when transferring from ImageNet to CIFAR100, LEEP can achieve up to 30% improvement compared to the best competing method in terms of the correlations with actual transfer accuracy.

Reverse-engineering deep ReLU networks
David Rolnick, Konrad Kording

The output of a neural network depends on its architecture and weights in a highly nonlinear way, and it is often assumed that a network's parameters cannot be recovered from its output. Here, we prove that, in fact, it is frequently possible to reconstruct the architecture, weights, and biases of a deep ReLU network by observing only its output. We leverage the fact that every ReLU network defines a piecewise linear function, where the boundaries between linear regions correspond to inputs for which some neuron in the network switches between inactive and active ReLU states. By dissecting the set of region boundaries into components associated with particular neurons, we show both theoretically and empirically that it is possible to recover the weights of neurons and their arrangement within the network, up to isomorphism.

Learning from Irregularly-Sampled Time Series: A Missing Data Perspective
Steve Li, Benjamin M Marlin

Irregularly-sampled time series occur in many domains including healthcare. They can be challenging to model because they do not naturally yield a fixed-dimensional representation as required by many standard machine learning models. In this paper, we consider irregular sampling from the perspective of missing data. We model observed irregularly-sampled time series data as a sequence of index-value pairs sampled from a continuous but unobserved function. We introduce an encoder-decoder framework for learning from such generic indexed sequences. We propose learning methods for this framework based on variational autoencoders and generative adversarial networks. For continuous irregularly-sampled time series, we introduce continuous convolutional layers that can efficiently interface with existing neural network architectures. Experiments show that our models are able to achieve competitive or better classification results on irregularly-sampled multivariate time series compared to recent RNN models while offering significantly faster training times.

Streaming k-Submodular Maximization under Noise subject to Size Constraint
Lan N. Nguyen, My T. Thai

Maximizing on k-submodular functions subject to size constraint has received extensive attention recently. In this paper, we investigate a more realistic scenario of this problem that (1) obtaining exact evaluation of an objective function is impractical, instead, its noisy version is acquired; and (2) algorithms are required to take only one single pass over dataset, producing solutions in a timely manner. We propose two novel streaming algorithms, namely DStream and RStream, with their theoretical performance guarantees. We further demonstrate the efficiency of our algorithms in two application, showing that our algorithms can return comparative results to state-of-the-art non-streaming methods while using a much fewer number of queries.

Nested Subspace Arrangement for Representation of Relational Data
Nozomi Hata, Shizuo Kaji, Akihiro Yoshida, Katsuki Fujisawa
Studies of acquiring appropriate continuous representations of a discrete objects such as graph and knowledge based data have been conducted by many researches in the field of machine learning. In this paper, we introduce Nested SubSpace arrangement (NSS arrangement), a comprehensive framework for representation learning. We show that existing embedding techniques can be regarded as a member of NSS arrangement. Based on the concept of the NSS arrangement, we implemented Disk-ANChor ARrangement (DANCAR), a representation learning method specializing to reproduce general graphs. Numerical experiments have shown that DANCAR has successfully embedded WordNet in ${\mathbb R}^{20}$ with the F1 score of 0.993 in the reconstruction task. DANCAR is also suitable for visualization to understand the characteristics of graph.
On Implicit Regularization in $\beta$-VAEs
Abhishek Kumar, Ben Poole
While the impact of variational inference (VI) on posterior inference in a fixed generative model is well-characterized, its role in regularizing a learned generative model when used in variational autoencoders (VAEs) is poorly understood. We study the regularizing effects of variational distributions on learning in generative models from two perspectives. First, we analyze the role that the choice of variational family plays in imparting uniqueness to the learned model by restricting the set of optimal generative models. Second, we study the regularization effect of the variational family on the local geometry of the decoding model. This analysis uncovers the regularizer implicit in the $\beta$-VAE objective, and leads to an approximation consisting of a deterministic autoencoding objective plus analytic regularizers that depend on the Hessian or Jacobian of the decoding model, unifying VAEs with recent heuristics proposed for training regularized autoencoders. We empirically verify these findings, observing that the proposed deterministic objective exhibits similar behavior to the $\beta$-VAE in terms of objective value and sample quality.
Concentration bounds for CVaR estimation: The cases of light-tailed and heavy-tailed distributions
Prashanth L.A., Krishna Jagannathan, Ravi Kolla

Conditional Value-at-Risk (CVaR) is a widely used risk metric in applications such as finance. We derive concentration bounds for CVaR estimates, considering separately the cases of sub-Gaussian, light-tailed and heavy-tailed distributions. For the sub-Gaussian and light-tailed cases, we use a classical CVaR estimator based on the empirical distribution constructed from the samples. For heavy-tailed random variables, we assume a mild `bounded moment' condition, and derive a concentration bound for a truncation-based estimator. Our concentration bounds exhibit exponential decay in the sample size, and are tighter than those available in the literature for the above distribution classes. To demonstrate the applicability of our concentration results, we consider the CVaR optimization problem in a multi-armed bandit setting. Specifically, we address the best CVaR-arm identification problem under a fixed budget. Using our CVaR concentration results, we derive an upper-bound on the probability of incorrect arm identification.

Fair Learning with Private Demographic Data
Hussein Mozannar, Mesrob Ohannessian, Nati Srebro

Sensitive attributes such as race are rarely available to learners in real world settings as their collection is often restricted by laws and regulations. We give a scheme that allows individuals to release their sensitive information privately while still allowing any downstream entity to learn non-discriminatory predictors. We show how to adapt non-discriminatory learners to work with privatized protected attributes giving theoretical guarantees on performance. Finally, we highlight how the methodology could apply to learning fair predictors in settings where protected attributes are only available for a subset of the data.

Combinatorial Pure Exploration for Dueling Bandit
Wei Chen, Yihan Du, Longbo Huang, Haoyu Zhao

In this paper, we study combinatorial pure exploration for dueling bandits (CPE-DB): we have multiple candidates for multiple positions as modeled by a bipartite graph, and in each round we sample a duel of two candidates on one position and observe who wins in the duel, with the goal of finding the best candidate-position matching with high probability after multiple rounds of samples. CPE-DB is an adaptation of the original combinatorial pure exploration for multi-armed bandit (CPE-MAB) problem to the dueling bandit setting. We consider both the Borda winner and the Condorcet winner cases. For Borda winner, we establish a reduction of the problem to the original CPE-MAB setting and design PAC and exact algorithms that achieve both the sample complexity similar to that in the CPE-MAB setting (which is nearly optimal for a subclass of problems) and polynomial running time per round. For Condorcet winner, we first design a fully polynomial time approximation scheme (FPTAS) for the offline problem of finding the Condorcet winner with known winning probabilities, and then use the FPTAS as an oracle to design a novel pure exploration algorithm CAR-Cond with sample complexity analysis. CAR-Cond is the first algorithm with polynomial running time per round …

What Can Learned Intrinsic Rewards Capture?
Zeyu Zheng, Junhyuk Oh, Matteo Hessel, Zhongwen Xu, Manuel Kroiss, Hado van Hasselt, David Silver, Satinder Singh

The objective of a reinforcement learning agent is to behave so as to maximise the sum of a suitable scalar function of state: the reward. These rewards are typically given and immutable. In this paper, we instead consider the proposition that the reward function itself can be a good locus of learned knowledge. To investigate this, we propose a scalable meta-gradient framework for learning useful intrinsic reward functions across multiple lifetimes of experience. Through several proof-of-concept experiments, we show that it is feasible to learn and capture knowledge about long-term exploration and exploitation into a reward function. Furthermore, we show that unlike policy transfer methods that capture how'' the agent should behave, the learned reward functions can generalise to other kinds of agents and to changes in the dynamics of the environment by capturingwhat'' the agent should strive to do.

Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling
Will Grathwohl, Kuan-Chieh Wang, Jörn Jacobsen, David Duvenaud, Richard Zemel

We present a new method for evaluating and training unnormalized density models. Our approach only requires access to the gradient of the unnormalized model’s log-density. We estimate the Stein discrepancy between the data density p(x) and the model density q(x) based on a vector function of the data. We parameterize this function with a neural network and fit its parameters to maximize this discrepancy. This yields a novel goodness-of-fit test which outperforms existing methods on high dimensional data. Furthermore, optimizing q(x) to minimize this discrepancy produces a novel method for training unnormalized models. This training method can fit large unnormalized models faster than existing approaches. The ability to both learn and compare models is a unique feature of the proposed method.

Interpolation between Residual and Non-Residual Networks
Zonghan Yang, Yang Liu, Chenglong Bao, Zuoqiang Shi

Although ordinary differential equations (ODEs) provide insights for designing network architectures, its relationship with the non-residual convolutional neural networks (CNNs) is still unclear. In this paper, we present a novel ODE model by adding a damping term. It can be shown that the proposed model can recover both a ResNet and a CNN by adjusting an interpolation coefficient. Therefore, the damped ODE model provides a unified framework for the interpretation of residual and non-residual networks. The Lyapunov analysis reveals better stability of the proposed model, and thus yields robustness improvement of the learned networks. Experiments on a number of image classification benchmarks show that the proposed model substantially improves the accuracy of ResNet and ResNeXt over the perturbed inputs from both stochastic noise and adversarial attack methods. Moreover, the loss landscape analysis demonstrates the improved robustness of our method along the attack direction.

Loss Function Search for Face Recognition
Xiaobo Wang, Shuo Wang, Cheng Chi, Shifeng Zhang, Tao Mei

In face recognition, designing margin-based (\textit{e.g.}, angular, additive, additive angular margins) softmax loss functions plays an important role to learn discriminative features. However, these hand-crafted heuristic methods may be sub-optimal because they require much effort to explore the large design space. Recently, an AutoML for loss function search method AM-LFS has been derived, which leverages reinforcement learning to search loss functions during the training process. But its search space is complex and unstable that hindering its superiority. In this paper, we first analyze that the key to enhance the feature discrimination is actually \textbf{how to reduce the softmax probability}. We then design a unified formulation for the current margin-based softmax losses. Accordingly, we define a novel search space and develop a reward-guided search method to automatically obtain the best candidate. Experimental results on a variety of face recognition benchmarks have demonstrated the effectiveness of our method over the state-of-the-art alternatives.

The Effect of Natural Distribution Shift on Question Answering Models
John Miller, Karl Krauth, Benjamin Recht, Ludwig Schmidt

We build four new test sets for the Stanford Question Answering Dataset (SQuAD) and evaluate the ability of question-answering systems to generalize to new data. Our first test set is from the original Wikipedia domain and measures the extent to which existing systems overfit the original test set. Despite several years of heavy test set re-use, we find no evidence of adaptive overfitting. The remaining three test sets are constructed from New York Times articles, Reddit posts, and Amazon product reviews and measure robustness to natural distribution shifts. Across a broad range of models, we observe average performance drops of 3.8, 14.0, and 17.4 F1 points, respectively. In contrast, a strong human baseline matches or exceeds the performance of SQuAD models on the original domain and exhibits little to no drop in new domains. Taken together, our results confirm the surprising resilience of the holdout method and emphasize the need to move towards evaluation metrics that incorporate robustness to natural distribution shifts.

Full Law Identification in Graphical Models of Missing Data: Completeness Results
Razieh Nabi, Rohit Bhattacharya, Ilya Shpitser

Missing data has the potential to affect analyses conducted in all fields of scientific study including healthcare, economics, and the social sciences. Several approaches to unbiased inference in the presence of non-ignorable missingness rely on the specification of the target distribution and its missingness process as a probability distribution that factorizes with respect to a directed acyclic graph. In this paper, we address the longstanding question of the characterization of models that are identifiable within this class of missing data distributions. We provide the first completeness result in this field of study -- necessary and sufficient graphical conditions under which, the full data distribution can be recovered from the observed data distribution. We then simultaneously address issues that may arise due to the presence of both missing data and unmeasured confounding, by extending these graphical conditions and proofs of completeness, to settings where some variables are not just missing, but completely unobserved.

A Free-Energy Principle for Representation Learning
Yansong Gao, Pratik Chaudhari

This paper employs a formal connection of machine learning with thermodynamics to characterize the quality of learnt representations for transfer learning. We discuss how information-theoretic functionals such as rate, distortion and classification loss of a model lie on a convex, so-called equilibrium surface. We prescribe dynamical processes to traverse this surface under constraints, e.g., an iso-classification process that trades off rate and distortion to keep the classification loss unchanged. We demonstrate how this process can be used for transferring representations from a source dataset to a target dataset while keeping the classification loss constant. Experimental validation of the theoretical results is provided on standard image-classification datasets.

Generating Programmatic Referring Expressions via Program Synthesis
Jiani Huang, Calvin Smith, Osbert Bastani, Rishabh Singh, Aws Albarghouthi, Mayur Naik

Incorporating symbolic reasoning into machine learning algorithms is a promising approach to improve performance on learning tasks that require logical reasoning. We study the problem of generating a programmatic variant of referring expressions that we call referring relational programs. In particular, given a symbolic representation of an image and a target object in that image, the goal is to generate a relational program that uniquely identifies the target object in terms of its attributes and its relations to other objects in the image. We propose a neurosymbolic program synthesis algorithm that combines a policy neural network with enumerative search to generate such relational programs. The policy neural network employs a program interpreter that provides immediate feedback on the consequences of the decisions made by the policy, and also takes into account the uncertainty in the symbolic representation of the image. We evaluate our algorithm on challenging benchmarks based on the CLEVR dataset, and demonstrate that our approach significantly outperforms several baselines.

MoNet3D: Towards Accurate Monocular 3D Object Localization in Real Time
XICHUAN ZHOU, YiCong Peng, Chunqiao Long, Fengbo Ren, Cong Shi

Monocular multi-object detection and localization in 3D space has been proven to be a challenging task. The MoNet3D algorithm is a novel and effective framework that can predict the 3D position of each object in a monocular image, and draw a 3D bounding box on each object. The MoNet3D method incorporates the prior knowledge of spatial geometric correlation of neighboring objects into the deep neural network training process, in order to improve the accuracy of 3D object localization. Experiments over the KITTI data set show that the accuracy of predicting the depth and horizontal coordinate of the object in 3D space can reach 96.25% and 94.74%, respectively. Meanwhile, the method can realize the real-time image processing capability of 27.85 FPS. Our code is publicly available at https://github.com/CQUlearningsystemgroup/YicongPeng

Stochastic Regret Minimization in Extensive-Form Games
Gabriele Farina, Christian Kroer, Tuomas Sandholm

Monte-Carlo counterfactual regret minimization (MCCFR) is the state-of-the-art algorithm for solving sequential games that are too large for full tree traversals. It works by using gradient estimates that can be computed via sampling. However, stochastic methods for sequential games have not been investigated extensively beyond MCCFR. In this paper we develop a new framework for developing stochastic regret minimization methods. This framework allows us to use any regret-minimization algorithm, coupled with any gradient estimator. The MCCFR algorithm can be analyzed as a special case of our framework, and this analysis leads to significantly stronger theoretical guarantees on convergence, while simultaneously yielding a simplified proof. Our framework allows us to instantiate several new stochastic methods for solving sequential games. We show extensive experiments on five games, where some variants of our methods outperform MCCFR.

On Second-Order Group Influence Functions for Black-Box Predictions
Samyadeep Basu, Xuchen You, Soheil Feizi

With the rapid adoption of machine learning systems in sensitive applications, there is an increasing need to make black-box models explainable. Often we want to identify an influential group of training samples in a particular test prediction for a given machine learning model. Existing influence functions tackle this problem by using first-order approximations of the effect of removing a sample from the training set on model parameters. To compute the influence of a group of training samples (rather than an individual point) in model predictions, the change in optimal model parameters after removing that group from the training set can be large. Thus, in such cases, the first-order approximation can be loose. In this paper, we address this issue and propose second-order influence functions for identifying influential groups in test-time predictions. For linear models, across different sizes and types of groups, we show that using the proposed second-order influence function improves the correlation between the computed influence values and the ground truth ones. We also show that second-order influence functions could be used with optimization techniques to improve the selection of the most influential group for a test-sample.

Scalable Nearest Neighbor Search for Optimal Transport
Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razenshteyn, Tal Wagner

The Optimal Transport (a.k.a. Wasserstein) distance is an increasingly popular similarity measure for rich data domains, such as images or text documents. This raises the necessity for fast nearest neighbor search algorithms according to this distance, which poses a substantial computational bottleneck on massive datasets.

In this work we introduce Flowtree, a fast and accurate approximation algorithm for the Wasserstein-1 distance. We formally analyze its approximation factor and running time. We perform extensive experimental evaluation of nearest neighbor search algorithms in the W_1 distance on real-world dataset. Our results show that compared to previous state of the art, Flowtree achieves up to 7.4 times faster running time.

Recurrent Hierarchical Topic-Guided RNN for Language Generation
Dandan Guo, Bo Chen, Ruiying Lu, Mingyuan Zhou

To simultaneously capture syntax and global semantics from a text corpus, we propose a new larger-context recurrent neural network (RNN) based language model, which extracts recurrent hierarchical semantic structure via a dynamic deep topic model to guide natural language generation. Moving beyond a conventional RNN-based language model that ignores long-range word dependencies and sentence order, the proposed model captures not only intra-sentence word dependencies, but also temporal transitions between sentences and inter-sentence topic dependencies. For inference, we develop a hybrid of stochastic-gradient Markov chain Monte Carlo and recurrent autoencoding variational Bayes. Experimental results on a variety of real-world text corpora demonstrate that the proposed model not only outperforms larger-context RNN-based language models, but also learns interpretable recurrent multilayer topics and generates diverse sentences and paragraphs that are syntactically correct and semantically coherent.

Problems with Shapley-value-based explanations as feature importance measures
Lizzie Kumar, Suresh Venkatasubramanian, Carlos Scheidegger, Sorelle Friedler

Game-theoretic formulations of feature importance have become popular as a way to "explain" machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some form of the game's unique Shapley values. Justification for these methods rests on two pillars: their desirable mathematical properties, and their applicability to specific motivations for explanations. We show that mathematical problems arise when Shapley values are used for feature importance and that the solutions to mitigate these necessarily induce further complexity, such as the need for causal reasoning. We also draw on additional literature to argue that Shapley values do not provide explanations which suit human-centric goals of explainability.

Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs
AmirEmad Ghassami, Alan Yang, Negar Kiyavash, Kun Zhang

The main approach to defining equivalence among acyclic directed causal graphical models is based on the conditional independence relationships in the distributions that the causal models can generate, in terms of the Markov equivalence. However, it is known that when cycles are allowed in the causal structure, conditional independence may not be a suitable notion for equivalence of two structures, as it does not reflect all the information in the distribution that is useful for identification of the underlying structure. In this paper, we present a general, unified notion of equivalence for linear Gaussian causal directed graphical models, whether they are cyclic or acyclic. In our proposed definition of equivalence, two structures are equivalent if they can generate the same set of data distributions. We also propose a weaker notion of equivalence called quasi-equivalence, which we show is the extent of identifiability from observational data. We propose analytic as well as graphical methods for characterizing the equivalence of two structures. Additionally, we propose a score-based method for learning the structure from observational data, which successfully deals with both acyclic and cyclic structures.

Quadratically Regularized Subgradient Methods for Weakly Convex Optimization with Weakly Convex Constraints
Runchao Ma, Qihang Lin, Tianbao Yang

Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoretical convergence guarantees for non-convex unconstrained problems, it remains a challenge to design provably efficient algorithms for problems with non-convex functional constraints. This paper proposes a class of subgradient methods for constrained optimization where the objective function and the constraint functions are weakly convex and nonsmooth. Our methods solve a sequence of strongly convex subproblems, where a quadratic regularization term is added to both the objective function and each constraint function. Each subproblem can be solved by various algorithms for strongly convex optimization. Under a uniform Slater’s condition, we establish the computation complexities of our methods for finding a nearly stationary point.

Fast Learning of Graph Neural Networks with Guaranteed Generalizability: One-hidden-layer Case
shuai zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong

Although graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice, their theoretical guarantee on generalizability remains elusive in the literature. In this paper, we provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems. Under the assumption that there exists a ground-truth GNN model (with zero generalization error), the objective of GNN learning is to estimate the ground-truth GNN parameters from the training data. To achieve this objective, we propose a learning algorithm that is built on tensor initialization and accelerated gradient descent. We then show that the proposed learning algorithm converges to the ground-truth GNN model for the regression problem, and to a model sufficiently close to the ground-truth for the binary classification problem. Moreover, for both cases, the convergence rate of the proposed learning algorithm is proven to be linear and faster than the vanilla gradient descent algorithm. We further explore the relationship between the sample complexity of GNNs and their underlying graph properties. Lastly, we provide numerical experiments to demonstrate the validity of our analysis and the effectiveness of the proposed learning algorithm for GNNs.

Efficient nonparametric statistical inference on population feature importance using Shapley values
Brian Williamson, Jean Feng
The true population-level importance of a variable in a prediction task provides useful knowledge about the underlying data-generating mechanism and can help in deciding which measurements to collect in subsequent experiments. Valid statistical inference on this importance is a key component in understanding the population of interest. We present a computationally efficient procedure for estimating and obtaining valid statistical inference on the \textbf{S}hapley \textbf{P}opulation \textbf{V}ariable \textbf{I}mportance \textbf{M}easure (SPVIM). Although the computational complexity of the true SPVIM scales exponentially with the number of variables, we propose an estimator based on randomly sampling only $\Theta(n)$ feature subsets given $n$ observations. We prove that our estimator converges at an asymptotically optimal rate. Moreover, by deriving the asymptotic distribution of our estimator, we construct valid confidence intervals and hypothesis tests. Our procedure has good finite-sample performance in simulations, and for an in-hospital mortality prediction task produces similar variable importance estimates when different machine learning algorithms are applied.
PENNI: Pruned Kernel Sharing for Efficient CNN Inference
Shiyu Li, Edward Hanson, Hai Li, Yiran Chen

Although state-of-the-art (SOTA) CNNs achieve outstanding performance on various tasks, their high computation demand and massive number of parameters make it difficult to deploy these SOTA CNNs onto resource-constrained devices. Previous works on CNN acceleration utilize low-rank approximation of the original convolution layers to reduce computation cost. However, these methods are very difficult to conduct upon sparse models, which limits execution speedup since redundancies within the CNN model are not fully exploited. We argue that kernel granularity decomposition can be conducted with low-rank assumption while exploiting the redundancy within the remaining compact coefficients. Based on this observation, we propose PENNI, a CNN model compression framework that is able to achieve model compactness and hardware efficiency simultaneously by (1) implementing kernel sharing in convolution layers via a small number of basis kernels and (2) alternately adjusting bases and coefficients with sparse constraints. Experiments show that we can prune 97% parameters and 92% FLOPs on ResNet18 CIFAR10 with no accuracy loss, and achieve a 44% reduction in run-time memory consumption and a 53% reduction in inference latency.

Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential Advertising
Xiaotian Hao, Zhaoqing Peng, Yi Ma, Guan Wang, Junqi Jin, Jianye Hao, Shan Chen, Rongquan Bai, Mingzhou Xie, Miao Xu, Zhenzhe Zheng, Chuan Yu, HAN LI, Jian Xu, Kun Gai

In E-commerce, advertising is essential for merchants to reach their target users. The typical objective is to maximize the advertiser's cumulative revenue over a period of time under a budget constraint. In real applications, an advertisement (ad) usually needs to be exposed to the same user multiple times until the user finally contributes revenue (e.g., places an order). However, existing advertising systems mainly focus on the immediate revenue with single ad exposures, ignoring the contribution of each exposure to the final conversion, thus usually falls into suboptimal solutions. In this paper, we formulate the sequential advertising strategy optimization as a dynamic knapsack problem. We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space while ensuring the solution quality. To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach. Extensive offline and online experiments show the superior performance of our approaches over state-of-the-art baselines in terms of cumulative revenue.

On the Generalization Effects of Linear Transformations in Data Augmentation
Sen Wu, Hongyang Zhang, Gregory Valiant, Christopher Re

Data augmentation is a powerful technique to improve performance in applications such as image and text classification tasks. Yet, there is little rigorous understanding of why and how various augmentations work. In this work, we consider a family of linear transformations and study their effects on the ridge estimator in an over-parametrized linear regression setting. First, we show that transformations which preserve the labels of the data can improve estimation by enlarging the span of the training data. Second, we show that transformations which mix data can improve estimation by playing a regularization effect. Finally, we validate our theoretical insights on MNIST. Based on the insights, we propose an augmentation scheme that searches over the space of transformations by how \textit{uncertain} the model is about the transformed data. We validate our proposed scheme on image and text datasets. For example, our method outperforms RandAugment by 1.24\% on CIFAR-100 using Wide-ResNet-28-10. Furthermore, we achieve comparable accuracy to the SoTA Adversarial AutoAugment on CIFAR datasets.

What is Local Optimality in Nonconvex-Nonconcave Minimax Optimization?
Chi Jin, Praneeth Netrapalli, Michael Jordan

Minimax optimization has found extensive applications in modern machine learning, in settings such as generative adversarial networks (GANs), adversarial training and multi-agent reinforcement learning. As most of these applications involve continuous nonconvex-nonconcave formulations, a very basic question arises---``what is a proper definition of local optima?''

Most previous work answers this question using classical notions of equilibria from simultaneous games, where the min-player and the max-player act simultaneously. In contrast, most applications in machine learning, including GANs and adversarial training, correspond to sequential games, where the order of which player acts first is crucial (since minimax is in general not equal to maximin due to the nonconvex-nonconcave nature of the problems). The main contribution of this paper is to propose a proper mathematical definition of local optimality for this sequential setting---local minimax, as well as to present its properties and existence results. Finally, we establish a strong connection to a basic local search algorithm---gradient descent ascent (GDA): under mild conditions, all stable limit points of GDA are exactly local minimax points up to some degenerate points.

Towards Understanding the Dynamics of the First-Order Adversaries
Zhun Deng, Hangfeng He, Jiaoyang Huang, Weijie Su

An acknowledged weakness of neural networks is their vulnerability to adversarial perturbations to the inputs. To improve the robustness of these models, one of the most popular defense mechanisms is to alternatively maximize the loss over the constrained perturbations (or called adversaries) on the inputs using projected gradient ascent and minimize over weights. In this paper, we analyze the dynamics of the maximization step towards understanding the experimentally observed effectiveness of this defense mechanism. Specifically, we investigate the landscape of the adversaries for a two-layer neural network with a quadratic loss. Our main result proves that projected gradient ascent finds a local maximum of this non-concave problem in a polynomial number of iterations with high probability. To our knowledge, this is the first work that provides a convergence analysis of the first-order adversaries. Moreover, our analysis demonstrates that, in the initial phase of adversarial training, the scale of the inputs matters in the sense that a smaller input scale leads to faster convergence of adversarial training and a ``more regular'' landscape. Finally, we show that these theoretical findings are in excellent agreement with a series of experiments.

Normalized Flat Minima: Exploring Scale Invariant Definition of Flat Minima for Neural Networks Using PAC-Bayesian Analysis
Yusuke Tsuzuku, Issei Sato, Masashi Sugiyama

The notion of flat minima has gained attention as a key metric of the generalization ability of deep learning models. However, current definitions of flatness are known to be sensitive to parameter rescaling. While some previous studies have proposed to rescale flatness metrics using parameter scales to avoid the scale dependence, the normalized metrics lose the direct theoretical connections between flat minima and generalization. In this paper, we first provide generalization error bounds using existing normalized flatness measures. Using the analysis, we then propose a novel normalized flatness metric. The proposed metric enjoys both direct theoretical connections and better empirical correlation to generalization error.

Collaborative Machine Learning with Incentive-Aware Model Rewards
Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon Chan, Bryan Kian Hsiang Low

Collaborative machine learning (ML) is an appealing paradigm to build high-quality ML models by training on the aggregated data from many parties. However, these parties are only willing to share their data when given enough incentives, such as a guaranteed fair reward based on their contributions. This motivates the need for measuring a party's contribution and designing an incentive-aware reward scheme accordingly. This paper proposes to value a party's reward based on Shapley value and information gain on model parameters given its data. Subsequently, we give each party a model as a reward. To formally incentivize the collaboration, we define some desirable properties (e.g., fairness and stability) which are inspired by cooperative game theory but adapted for our model reward that is uniquely freely replicable. Then, we propose a novel model reward scheme to satisfy fairness and trade off between the desirable properties via an adjustable parameter. The value of each party's model reward determined by our scheme is attained by injecting Gaussian noise to the aggregated training data with an optimized noise variance. We empirically demonstrate interesting properties of our scheme and evaluate its performance using synthetic and real-world datasets.

Randomized Smoothing of All Shapes and Sizes
Greg Yang, Tony Duan, J. Edward Hu, Hadi Salman, Ilya Razenshteyn, Jerry Li
Randomized smoothing is the current state-of-the-art defense with provable robustness against $\ell_2$ adversarial attacks. Many works have devised new randomized smoothing schemes for other metrics, such as $\ell_1$ or $\ell_\infty$; however, substantial effort was needed to derive such new guarantees. This begs the question: can we find a general theory for randomized smoothing? We propose a novel framework for devising and analyzing randomized smoothing schemes, and validate its effectiveness in practice. Our theoretical contributions are: (1) we show that for an appropriate notion of "optimal", the optimal smoothing distributions for any "nice" norms have level sets given by the norm's *Wulff Crystal*; (2) we propose two novel and complementary methods for deriving provably robust radii for any smoothing distribution; and, (3) we show fundamental limits to current randomized smoothing techniques via the theory of *Banach space cotypes*. By combining (1) and (2), we significantly improve the state-of-the-art certified accuracy in $\ell_1$ on standard datasets. Meanwhile, we show using (3) that with only label statistics under random input perturbations, randomized smoothing cannot achieve nontrivial certified accuracy against perturbations of $\ell_p$-norm $\Omega(\min(1, d^{\frac{1}{p} - \frac{1}{2}}))$, when the input dimension $d$ is large. We provide code in github.com/tonyduan/rs4a.
Improving the Gating Mechanism of Recurrent Neural Networks
Albert Gu, Caglar Gulcehre, Thomas Paine, Matthew Hoffman, Razvan Pascanu

Gating mechanisms are widely used in neural network models, where they allow gradients to backpropagate easily through depth or time. However, their saturation property introduces problems of its own. For example, in recurrent models these gates need to have outputs near 1 to propagate information over long time-delays, which requires them to operate in their saturation regime and hinders gradient-based learning of the gate mechanism. We address this problem by deriving two synergistic modifications to the standard gating mechanism that are easy to implement, introduce no additional hyperparameters, and improve learnability of the gates when they are close to saturation. We show how these changes are related to and improve on alternative recently proposed gating mechanisms such as chrono-initialization and Ordered Neurons. Empirically, our simple gating mechanisms robustly improve the performance of recurrent models on a range of applications, including synthetic memorization tasks, sequential image classification, language modeling, and reinforcement learning, particularly when long-term dependencies are involved.

Maximum-and-Concatenation Networks
Xingyu Xie, Hao Kong, Jianlong Wu, Wayne Zhang, Guangcan Liu, Zhouchen Lin

While successful in many fields, deep neural networks (DNNs) still suffer from some open problems such as bad local minima and unsatisfactory generalization performance. In this work, we propose a novel architecture called Maximum-and-Concatenation Networks (MCN) to try eliminating bad local minima and improving generalization ability as well. Remarkably, we prove that MCN has a very nice property; that is, every local minimum of an (l+1)-layer MCN can be better than, at least as good as, the global minima of the network consisting of its first l layers. In other words, by increasing the network depth, MCN can autonomously improve its local minima's goodness, what is more, it is easy to plug MCN into an existing deep model to make it also have this property. Finally, under mild conditions, we show that MCN can approximate certain continuous function arbitrarily well with high efficiency; that is, the covering number of MCN is much smaller than most existing DNNs such as deep ReLU. Based on this, we further provide a tight generalization bound to guarantee the inference ability of MCN when dealing with testing samples.

Amortized Population Gibbs Samplers with Neural Sufficient Statistics
Hao Wu, Heiko Zimmermann, Eli Sennesh, Tuan Anh Le, Jan-Willem van de Meent

We develop amortized population Gibbs (APG) samplers, a class of scalable methods that frame structured variational inference as adaptive importance sampling. APG samplers construct high-dimensional proposals by iterating over updates to lower-dimensional blocks of variables. We train each conditional proposal by minimizing the inclusive KL divergence with respect to the conditional posterior. To appropriately account for the size of the input data, we develop a new parameterization in terms of neural sufficient statistics. Experiments show that APG samplers can be used to train highly-structured deep generative models in an unsupervised manner, and achieve substantial improvements in inference accuracy relative to standard autoencoding variational methods.

Stochastic Optimization for Non-convex Inf-Projection Problems
Yan Yan, Yi Xu, Lijun Zhang, Wang Xiaoyu, Tianbao Yang

In this paper, we study a family of non-convex and possibly non-smooth inf-projection minimization problems, where the target objective function is equal to minimization of a joint function over another variable. This problem include difference of convex (DC) functions and a family of bi-convex functions as special cases. We develop stochastic algorithms and establish their first-order convergence for finding a (nearly) stationary solution of the target non-convex function under different conditions of the component functions. To the best of our knowledge, this is the first work that comprehensively studies stochastic optimization of non-convex inf-projection minimization problems with provable convergence guarantee. Our algorithms enable efficient stochastic optimization of a family of non-decomposable DC functions and a family of bi-convex functions. To demonstrate the power of the proposed algorithms we consider an important application in variance-based regularization. Experiments verify the effectiveness of our inf-projection based formulation and the proposed stochastic algorithm in comparison with previous stochastic algorithms based on the min-max formulation for achieving the same effect.

Generative Flows with Matrix Exponential
Changyi Xiao, Ligang Liu

Generative flows models enjoy the properties of tractable exact likelihood and efficient sampling, which are composed of a sequence of invertible functions. In this paper, we incorporate matrix exponential into generative flows. Matrix exponential is a map from matrices to invertible matrices, this property is suitable for generative flows. Based on matrix exponential, we propose matrix exponential coupling layers that are a general case of affine coupling layers and matrix exponential invertible 1 x 1 convolutions that do not collapse during training. And we modify the networks architecture to make training stable and significantly speed up the training process. Our experiments show that our model achieves great performance on density estimation amongst generative flows models.

Searching to Exploit Memorization Effect in Learning with Noisy Labels
QUANMING YAO, Hansi Yang, Bo Han, Gang Niu, James Kwok

Sample selection approaches are popular in robust learning from noisy labels. However, how to properly control the selection process so that deep networks can benefit from the memorization effect is a hard problem. In this paper, motivated by the success of automated machine learning (AutoML), we model this issue as a function approximation problem. Specifically, we design a domain-specific search space based on general patterns of the memorization effect and propose a novel Newton algorithm to solve the bi-level optimization problem efficiently. We further provide a theoretical analysis of the algorithm, which ensures a good approximation to critical points. Experiments are performed on both benchmark and real-world data sets. Results demonstrate that the proposed method is much better than the state-of-the-art noisy-label-learning approaches, and also much more efficient than existing AutoML algorithms.

Optimizing for the Future in Non-Stationary MDPs
Yash Chandak, Georgios Theocharous, Shiv Shankar, Martha White, Sridhar Mahadevan, Philip Thomas

Most reinforcement learning methods are based upon the key assumption that the transition dynamics and reward functions are fixed, that is, the underlying Markov decision process is stationary. However, in many real-world applications, this assumption is violated, and using existing algorithms may result in a performance lag. To proactively search for a good future policy, we present a policy gradient algorithm that maximizes a forecast of future performance. This forecast is obtained by fitting a curve to the counter-factual estimates of policy performance over time, without explicitly modeling the underlying non-stationarity. The resulting algorithm amounts to a non-uniform reweighting of past data, and we observe that minimizing performance over some of the data from past episodes can be beneficial when searching for a policy that maximizes future performance. We show that our algorithm, called Prognosticator, is more robust to non-stationarity than two online adaptation techniques, on three simulated problems motivated by real-world applications.

Deep Reasoning Networks for Unsupervised Pattern De-mixing with Constraint Reasoning
Di Chen, Yiwei Bai, Wenting Zhao, Sebastian Ament, John Gregoire, Carla Gomes

We introduce Deep Reasoning Networks (DRNets), an end-to-end framework that combines deep learning with constraint reasoning for solving pattern de-mixing problems, typically in an unsupervised or very-weakly-supervised setting. DRNets exploit problem structure and prior knowledge by tightly combining constraint reasoning with stochastic-gradient-based neural network optimization. Our motivating task is from materials discovery and concerns inferring crystal structures of materials from X-ray diffraction data (Crystal-Structure-Phase-Mapping). Given the complexity of its underlying scientific domain, we start by introducing DRNets on an analogous but much simpler task: de-mixing overlapping hand-written Sudokus (Multi-MNIST-Sudoku). On Multi-MNIST-Sudoku, DRNets almost perfectly recovered the mixed Sudokus' digits, with 100\% digit accuracy, outperforming the supervised state-of-the-art MNIST de-mixing models. On Crystal-Structure-Phase-Mapping, DRNets significantly outperform the state of the art and experts' capabilities, recovering more precise and physically meaningful crystal structures.

Distributionally Robust Policy Evaluation and Learning in Offline Contextual Bandits
Nian Si, Fan Zhang, Zhengyuan Zhou, Jose Blanchet

Policy learning using historical observational data is an important problem that has found widespread applications. However, existing literature rests on the crucial assumption that the future environment where the learned policy will be deployed is the same as the past environment that has generated the data–an assumption that is often false or too coarse an approximation. In this paper, we lift this assumption and aim to learn a distributionally robust policy with bandit observational data. We propose a novel learning algorithm that is able to learn a robust policy to adversarial perturbations and unknown covariate shifts. We first present a policy evaluation procedure in the ambiguous environment and also give a heuristic algorithm to solve the distributionally robust policy learning problems efficiently. Additionally, we provide extensive simulations to demonstrate the robustness of our policy.

Multigrid Neural Memory
Tri Huynh, Michael Maire, Matthew Walter

We introduce a novel approach that endows neural networks with emergent, long-term, large-scale memory. Distinct from strategies that connect neural networks to external memory banks via intricately crafted controllers and hand-designed attentional mechanisms, our memory is internal, distributed, co-located alongside computation, and implicitly addressed, while being drastically simpler than prior efforts. Architecting networks with multigrid structure and connectivity, while distributing memory cells alongside computation throughout this topology, we observe the emergence of coherent memory subsystems. Our hierarchical spatial organization, parameterized convolutionally, permits efficient instantiation of large-capacity memories, while multigrid topology provides short internal routing pathways, allowing convolutional networks to efficiently approximate the behavior of fully connected networks. Such networks have an implicit capacity for internal attention; augmented with memory, they learn to read and write specific memory locations in a dynamic data-dependent manner. We demonstrate these capabilities on synthetic exploration and mapping tasks, where our network is able to self-organize and retain long-term memory for trajectories of thousands of time steps. On tasks decoupled from any notion of spatial geometry: sorting, associative recall, and question answering, our design functions as a truly generic memory and yields excellent results.

FedBoost: A Communication-Efficient Algorithm for Federated Learning
Jenny Hamer, Mehryar Mohri, Ananda Theertha Suresh

Communication cost is often a bottleneck in federated learning and other client-based distributed learning scenarios. To overcome this, several gradient compression and model compression algorithms have been proposed. In this work, we propose an alternative approach whereby an ensemble of pre-trained base predictors is trained via federated learning. This method allows for training a model which may otherwise surpass the communication bandwidth and storage capacity of the clients to be learned with on-device data through federated learning. Motivated by language modeling, we prove the optimality of ensemble methods for density estimation for standard empirical risk minimization and agnostic risk minimization. We provide communication-efficient ensemble algorithms for federated learning, where per-round communication cost is independent of the size of the ensemble. Furthermore, unlike works on gradient compression, our proposed approach reduces the communication cost of both server-to-client and client-to-server communication.

Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach
Martin Mladenov, Elliot Creager, Omer Ben-Porat, Kevin Swersky, Richard Zemel, Craig Boutilier

Most recommender systems (RS) research assumes that a user's utility can be maximized independently of the utility of the other agents (e.g., other users, content providers). In realistic settings, this is often not true -- the dynamics of an RS ecosystem couple the long-term utility of all agents. In this work, we explore settings in which content providers cannot remain viable unless they receive a certain level of user engagement. We formulate this problem as one of equilibrium selection in the induced dynamical system, and show that it can be solved as an optimal constrained matching problem. Our model ensures the system reaches an equilibrium with maximal social welfare supported by a sufficiently diverse set of viable providers. We demonstrate that even in a simple, stylized dynamical RS model, the standard myopic approach to recommendation - always matching a user to the best provider - performs poorly. We develop several scalable techniques to solve the matching problem, and also draw connections to various notions of user regret and fairness, arguing that these outcomes are fairer in a utilitarian sense.

Tensor denoising and completion based on ordinal observations
Chanwoo Lee, Miaoyan Wang

Higher-order tensors arise frequently in applications such as neuroimaging, recommendation system, and social network analysis. We consider the problem of low-rank tensor estimation from possibly incomplete, ordinal-valued observations. Two related problems are studied, one on tensor denoising and another on tensor completion. We propose a multi-linear cumulative link model, develop a rank-constrained M-estimator, and obtain theoretical accuracy guarantees. Our mean squared error bound enjoys a faster convergence rate than previous results, and we show that the proposed estimator is minimax optimal under the class of low-rank models. Furthermore, the procedure developed serves as an efficient completion method which guarantees consistent recovery of an order-K (d,...,d)-dimensional low-rank tensor using only O(Kd) noisy, quantized observations. We demonstrate the outperformance of our approach over previous methods on the tasks of clustering and collaborative filtering.

Approximation Guarantees of Local Search Algorithms via Localizability of Set Functions
Kaito Fujii

This paper proposes a new framework for providing approximation guarantees of local search algorithms. Local search is a basic algorithm design technique and is widely used for various combinatorial optimization problems. To analyze local search algorithms for set function maximization, we propose a new notion called \textit{localizability} of set functions, which measures how effective local improvement is. Moreover, we provide approximation guarantees of standard local search algorithms under various combinatorial constraints in terms of localizability. The main application of our framework is sparse optimization, for which we show that restricted strong concavity and restricted smoothness of the objective function imply localizability, and further develop accelerated versions of local search algorithms. We conduct experiments in sparse regression and structure learning of graphical models to confirm the practical efficiency of the proposed local search algorithms.

Student Specialization in Deep Rectified Networks With Finite Width and Input Dimension
Yuandong Tian
We consider a deep ReLU / Leaky ReLU student network trained from the output of a fixed teacher network of the same depth, with Stochastic Gradient Descent (SGD). The student network is \emph{over-realized}: at each layer $l$, the number $n_l$ of student nodes is more than that ($m_l$) of teacher. Under mild conditions on dataset and teacher network, we prove that when the gradient is small at every data sample, each teacher node is \emph{specialized} by at least one student node \emph{at the lowest layer}. For two-layer network, such specialization can be achieved by training on any dataset of \emph{polynomial} size $\mathcal{O}( K^{5/2} d^3 \epsilon^{-1})$. until the gradient magnitude drops to $\mathcal{O}(\epsilon/K^{3/2}\sqrt{d})$. Here $d$ is the input dimension, $K = m_1 + n_1$ is the total number of neurons in the lowest layer of teacher and student. Note that we require a specific form of data augmentation and the sample complexity includes the additional data generated from augmentation. To our best knowledge, we are the first to give polynomial sample complexity for student specialization of training two-layer (Leaky) ReLU networks with finite depth and width in teacher-student setting, and finite complexity for the lowest layer specialization in multi-layer case, without …
Taylor Expansion Policy Optimization
Yunhao Tang, Michal Valko, Remi Munos

In this work, we investigate the application of Taylor expansions in reinforcement learning. In particular, we propose Taylor Expansion Policy Optimization, a policy optimization formalism that generalizes prior work as a first-order special case. We also show that Taylor expansions intimately relate to off-policy evaluation. Finally, we show that this new formulation entails modifications which improve the performance of several state-of-the-art distributed algorithms.

Layered Sampling for Robust Optimization Problems
Hu Ding, Zixiu Wang
In real world, our datasets often contain outliers. Most existing algorithms for handling outliers take high time complexities ({\em e.g.} quadratic or cubic complexity). {\em Coreset} is a popular approach for compressing data so as to speed up the optimization algorithms. However, the current coreset methods cannot be easily extended to handle the case with outliers. In this paper, we propose a new variant of coreset technique, {\em layered sampling}, to deal with two fundamental robust optimization problems: {\em $k$-median/means clustering with outliers} and {\em linear regression with outliers}. This new coreset method is in particular suitable to speed up the iterative algorithms (which often improve the solution within a local range) for those robust optimization problems.
Causal Strategic Linear Regression
Yonadav Shavit, Ben Edelman, Brian Axelrod

In many predictive decision-making scenarios, such as credit scoring and academic testing, a decision-maker must construct a model that accounts for agents' incentives to ``game'' by changing their features to receive better decisions. Whereas the strategic classification literature has previously assumed that agents' outcomes are not causally dependent on their features (and thus strategic behavior is a form of lying), we join concurrent work in modeling agents' outcomes as a function of their changeable attributes. Our work introduces the realizable linear regression setting, and is the first to incorporate a crucial phenomenon: when agents act to change observable features, they may as a side effect perturb hidden features that causally affect their true outcomes. As our main contribution, we provide the efficient algorithms for optimizing three distinct decision-making objectives: accurately predicting agents' post-gaming outcomes (prediction risk minimization), incentivizing agents to improve these outcomes (agent outcome maximization), and estimating the coefficients of the true underlying model (parameter estimation). Our algorithms circumvent the hardness result of Miller et al. (2020) by allowing the decision maker to test a sequence of decision rules and observe agents' responses, in effect performing causal interventions by varying the chosen rule.

Simple and Deep Graph Convolutional Networks
Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, Yaliang Li

Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the {\em over-smoothing} problem. In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: {\em Initial residual} and {\em Identity mapping}. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi- and full-supervised tasks.

Two Routes to Scalable Credit Assignment without Weight Symmetry
Daniel Kunin, Aran Nayebi, Javier Sagastuy-Brena, Surya Ganguli, Jon Bloom, Daniel Yamins

The neural plausibility of backpropagation has long been disputed, primarily for its use of non-local weight transport --- the biologically dubious requirement that one neuron instantaneously measure the synaptic weights of another. Until recently, attempts to create local learning rules that avoid weight transport have typically failed in the large-scale learning scenarios where backpropagation shines, e.g. ImageNet categorization with deep convolutional networks. Here, we investigate a recently proposed local learning rule that yields competitive performance with backpropagation and find that it is highly sensitive to metaparameter choices, requiring laborious tuning that does not transfer across network architecture. Our analysis indicates the underlying mathematical reason for this instability, allowing us to identify a more robust local learning rule that better transfers without metaparameter tuning. Nonetheless, we find a performance and stability gap between this local rule and backpropagation that widens with increasing model depth. We then investigate several non-local learning rules that relax the need for instantaneous weight transport into a more biologically-plausible "weight estimation" process, showing that these rules match state-of-the-art performance on deep networks and operate effectively in the presence of noisy updates. Taken together, our results suggest two routes towards the discovery of neural implementations for credit assignment …

Bayesian Optimisation over Multiple Continuous and Categorical Inputs
Robin Ru, Ahsan Alvi, Vu Nguyen, Michael A Osborne, Stephen Roberts

Efficient optimisation of black-box problems that comprise both continuous and categorical inputs is important, yet poses significant challenges. Current approaches, like one-hot encoding, severely increase the dimension of the search space, while separate modelling of category-specific data is sample-inefficient. Both frameworks are not scalable to practical applications involving multiple categorical variables, each with multiple possible values. We propose a new approach, Continuous and Categorical Bayesian Optimisation (CoCaBO), which combines the strengths of multi-armed bandits and Bayesian optimisation to select values for both categorical and continuous inputs. We model this mixed-type space using a Gaussian Process kernel, designed to allow sharing of information across multiple categorical variables; this allows CoCaBO to leverage all available data efficiently. We extend our method to the batch setting and propose an efficient selection procedure that dynamically balances exploration and exploitation whilst encouraging batch diversity. We demonstrate empirically that our method outperforms existing approaches on both synthetic and real-world optimisation tasks with continuous and categorical inputs.

Semiparametric Nonlinear Bipartite Graph Representation Learning with Provable Guarantees
Sen Na, Yuwei Luo, Zhuoran Yang, Zhaoran Wang, Mladen Kolar

Graph representation learning is a ubiquitous task in machine learning where the goal is to embed each vertex into a low-dimensional vector space. We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution: the bipartite graph is assumed to be generated by a semiparametric exponential family distribution, whose parametric component is given by the proximity of outputs of two one-layer neural networks that take high-dimensional features as inputs, while nonparametric (nuisance) component is the base measure. In this setting, the representation learning problem is equivalent to recovering the weight matrices, and the main challenges of estimation arise from the nonlinearity of activation functions and the nonparametric nuisance component of the distribution. To overcome these challenges, we propose a pseudo-likelihood objective based on the rank-order decomposition technique and show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate. Moreover, we prove that the sample complexity of the problem is linear in dimensions (up to logarithmic factors), which is consistent with parametric Gaussian models. However, our estimator is robust to any model misspecification …

NGBoost: Natural Gradient Boosting for Probabilistic Prediction
Tony Duan, Anand Avati, Daisy Ding, Khanh K. Thai, Sanjay Basu, Andrew Ng, Alejandro Schuler

We present Natural Gradient Boosting (NGBoost), an algorithm for generic probabilistic prediction via gradient boosting. Typical regression models return a point estimate, conditional on covariates, but probabilistic regression models output a full probability distribution over the outcome space, conditional on the covariates. This allows for predictive uncertainty estimation - crucial in applications like healthcare and weather forecasting. NGBoost generalizes gradient boosting to probabilistic regression by treating the parameters of the conditional distribution as targets for a multiparameter boosting algorithm. Furthermore, we show how the Natural Gradient is required to correct the training dynamics of our multiparameter boosting approach. NGBoost can be used with any base learner, any family of distributions with continuous parameters, and any scoring rule. NGBoost matches or exceeds the performance of existing methods for probabilistic prediction while offering additional benefits in flexibility, scalability, and usability. An open-source implementation is available at github.com/stanfordmlgroup/ngboost.

Deep Divergence Learning
Kubra Cilingir, Rachel Manzelli, Brian Kulis

Classical linear metric learning methods have recently been extended along two distinct lines: deep metric learning methods for learning embeddings of the data using neural networks, and Bregman divergence learning approaches for extending learning Euclidean distances to more general divergence measures such as divergences over distributions. In this paper, we introduce deep Bregman divergences, which are based on learning and parameterizing functional Bregman divergences using neural networks, and which unify and extend these existing lines of work. We show in particular how deep metric learning formulations, kernel metric learning, Mahalanobis metric learning, and moment-matching functions for comparing distributions arise as special cases of these divergences in the symmetric setting. We then describe a deep learning framework for learning general functional Bregman divergences, and show in experiments that this method yields superior performance on benchmark datasets as compared to existing deep metric learning approaches. We also discuss novel applications, including a semi-supervised distributional clustering problem, and a new loss function for unsupervised data generation.

Manifold Identification for Ultimately Communication-Efficient Distributed Optimization
Yu-Sheng Li, Wei-Lin Chiang, Ching-pei Lee

This work proposes a progressive manifold identification approach for distributed optimization with sound theoretical justifications to greatly reduce both the rounds of communication and the bytes communicated per round for partly-smooth regularized problems such as the L1- and group-LASSO-regularized ones. Our two-stage method first uses an inexact proximal quasi-Newton method to iteratively identify a sequence of low-dimensional manifolds in which the final solution would lie, and restricts the model update within the current manifold to gradually lower the order of the per-round communication cost from the problem dimension to the dimension of the manifold that contains a solution and makes the problem within it smooth. After identifying this manifold, we take superlinear-convergent truncated semismooth Newton steps computed by preconditioned conjugate gradient to largely reduce the communication rounds by improving the convergence rate from the existing linear or sublinear ones to a superlinear rate. Experiments show that our method can be two orders of magnitude better in the communication cost and an order of magnitude faster in the running time than state of the art.

DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu, Edgar Dobriban, Susan B Davidson

Machine learning models are not static and may need to be retrained on slightly changed datasets, for instance, with the addition or deletion of a set of data points. This has many applications, including privacy, robustness, bias reduction, and uncertainty quantifcation. However, it is expensive to retrain models from scratch. To address this problem, we propose the DeltaGrad algorithm for rapid retraining machine learning models based on information cached during the training phase. We provide both theoretical and empirical support for the effectiveness of DeltaGrad, and show that it compares favorably to the state of the art.

The Buckley-Osthus model and the block preferential attachment model: statistical analysis and application
Wenpin Tang, Xin Guo, Fengmin Tang

This paper is concerned with statistical estimation of two preferential attachment models: the Buckley-Osthus model and the block preferential attachment model. We prove that the maximum likelihood estimates for both models are consistent. We perform simulation studies to corroborate our theoretical findings. We also apply both models to study the evolution of a real-world network. A list of open problems are presented.

On the Noisy Gradient Descent that Generalizes as SGD
Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, Zhanxing Zhu

The gradient noise of SGD is considered to play a central role in the observed strong generalization abilities of deep learning. While past studies confirm that the magnitude and the covariance structure of gradient noise are critical for regularization, it remains unclear whether or not the class of noise distributions is important. In this work we provide negative results by showing that noises in classes different from the SGD noise can also effectively regularize gradient descent. Our finding is based on a novel observation on the structure of the SGD noise: it is the multiplication of the gradient matrix and a sampling noise that arises from the mini-batch sampling procedure. Moreover, the sampling noises unify two kinds of gradient regularizing noises that belong to the Gaussian class: the one using (scaled) Fisher as covariance and the one using the gradient covariance of SGD as covariance. Finally, thanks to the flexibility of choosing noise class, an algorithm is proposed to perform noisy gradient descent that generalizes well, the variant of which even benefits large batch SGD training without hurting generalization.

Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai, H. Vincent Poor, Yuxin Chen

We study the distribution and uncertainty of nonconvex optimization for noisy tensor completion --- the problem of estimating a low-rank tensor given incomplete and corrupted observations of its entries. Focusing on a two-stage nonconvex estimation algorithm, we characterize the distribution of this estimator down to fine scales. This distributional theory in turn allows one to construct valid and short confidence intervals for both the unseen tensor entries and its underlying tensor factors. The proposed inferential procedure enjoys several important features: (1) it is fully adaptive to noise heteroscedasticity, and (2) it is data-driven and adapts automatically to unknown noise distributions. Furthermore, our findings unveil the statistical optimality of nonconvex tensor completion: it attains un-improvable estimation accuracy --- including both the rates and the pre-constants --- under i.i.d. Gaussian noise.

Implicit Learning Dynamics in Stackelberg Games: Equilibria Characterization, Convergence Analysis, and Empirical Study
Tanner Fiez, Benjamin Chasnov, Lillian Ratliff

Contemporary work on learning in continuous games has commonly overlooked the hierarchical decision-making structure present in machine learning problems formulated as games, instead treating them as simultaneous play games and adopting the Nash equilibrium solution concept. We deviate from this paradigm and provide a comprehensive study of learning in Stackelberg games. This work provides insights into the optimization landscape of zero-sum games by establishing connections between Nash and Stackelberg equilibria along with the limit points of simultaneous gradient descent. We derive novel gradient-based learning dynamics emulating the natural structure of a Stackelberg game using the implicit function theorem and provide convergence analysis for deterministic and stochastic updates for zero-sum and general-sum games. Notably, in zero-sum games using deterministic updates, we show the only critical points the dynamics converge to are Stackelberg equilibria and provide a local convergence rate. Empirically, our learning dynamics mitigate rotational behavior and exhibit benefits for training generative adversarial networks compared to simultaneous gradient descent.

Faster Graph Embeddings via Coarsening
Matthew Fahrbach, Gramoz Goranci, Richard Peng, Sushant Sachdeva, Chi Wang

Graph embeddings are a ubiquitous tool for machine learning tasks, such as node classification and link prediction, on graph-structured data. However, computing the embeddings for large-scale graphs is prohibitively inefficient even if we are interested only in a small subset of relevant vertices. To address this, we present an efficient graph coarsening approach, based on Schur complements, for computing the embedding of the relevant vertices. We prove that these embeddings are preserved exactly by the Schur complement graph that is obtained via Gaussian elimination on the non-relevant vertices. As computing Schur complements is expensive, we give a nearly-linear time algorithm that generates a coarsened graph on the relevant vertices that provably matches the Schur complement in expectation in each iteration. Our experiments involving prediction tasks on graphs demonstrate that computing embeddings on the coarsened graph, rather than the entire graph, leads to significant time savings without sacrificing accuracy.

Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data
Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yufeng Li, Zhi-Hua Zhou
Deep semi-supervised learning (SSL) has been recently shown very effectively. However, its performance is seriously decreased when the class distribution is mismatched, among which a common situation is that unlabeled data contains some classes not seen in the labeled data. Efforts on this issue remain to be limited. This paper proposes a simple and effective safe deep SSL method to alleviate the harm caused by it. In theory, the result learned from the new method is never worse than learning from merely labeled data, and it is theoretically guaranteed that its generalization approaches the optimal in the order $O(\sqrt{d\ln(n)/n})$, even faster than the convergence rate in supervised learning associated with massive parameters. In the experiment of benchmark data, unlike the existing deep SSL methods which are no longer as good as supervised learning in 40\% of unseen-class unlabeled data, the new method can still achieve performance gain in more than 60\% of unseen-class unlabeled data. Moreover, the proposal is suitable for many deep SSL algorithms and can be easily extended to handle other cases of class distribution mismatch.
AutoGAN-Distiller: Searching to Compress Generative Adversarial Networks
Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, Zhangyang Wang

The compression of Generative Adversarial Networks (GANs) has lately drawn attention, due to the increasing demand for deploying GANs into mobile devices for numerous applications such as image translation, enhancement and editing. However, compared to the substantial efforts to compressing other deep models, the research on compressing GANs (usually the generators) remains at its infancy stage. Existing GAN compression algorithms are limited to handling specific GAN architectures and losses. Inspired by the recent success of AutoML in deep compression, we introduce AutoML to GAN compression and develop an AutoGAN-Distiller (AGD) framework. Starting with a specifically designed efficient search space, AGD performs an end-to-end discovery for new efficient generators, given the target computational resource constraints. The search is guided by the original GAN model via knowledge distillation, therefore fulfilling the compression. AGD is fully automatic, standalone (i.e., needing no trained discriminators), and generically applicable to various GAN models. We evaluate AGD in two representative GAN tasks: image translation and super resolution. Without bells and whistles, AGD yields remarkably lightweight yet more competitive compressed models, that largely outperform existing alternatives. Our codes and pretrained models are available at: https://github.com/TAMU-VITA/AGD.

FetchSGD: Communication-Efficient Federated Learning with Sketching
Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman, Joseph E Gonzalez, Raman Arora

Existing approaches to federated learning suffer from a communication bottleneck as well as convergence issues due to sparse client participation. In this paper we introduce a novel algorithm, called FetchSGD, to overcome these challenges. FetchSGD compresses model updates using a Count Sketch, and then takes advantage of the mergeability of sketches to combine model updates from many workers. A key insight in the design of FetchSGD is that, because the Count Sketch is linear, momentum and error accumulation can both be carried out within the sketch. This allows the algorithm to move momentum and error accumulation from clients to the central aggregator, overcoming the challenges of sparse client participation while still achieving high compression rates and good convergence. We prove that FetchSGD has favorable convergence guarantees, and we demonstrate its empirical effectiveness by training two residual networks and a transformer model.

Fair Generative Modeling via Weak Supervision
Kristy Choi, Aditya Grover, Trisha Singh, Rui Shu, Stefano Ermon

Real-world datasets are often biased with respect to key demographic factors such as race and gender. Due to the latent nature of the underlying factors, detecting and mitigating bias is especially challenging for unsupervised machine learning. We present a weakly supervised algorithm for overcoming dataset bias for deep generative models. Our approach requires access to an additional small, unlabeled reference dataset as the supervision signal, thus sidestepping the need for explicit labels on the underlying bias factors. Using this supplementary dataset, we detect the bias in existing datasets via a density ratio technique and learn generative models which efficiently achieve the twin goals of: 1) data efficiency by using training examples from both biased and reference datasets for learning; and 2) data generation close in distribution to the reference dataset at test time. Empirically, we demonstrate the efficacy of our approach which reduces bias w.r.t. latent factors by an average of up to 34.6% over baselines for comparable image generation using generative adversarial networks.

Online Learning for Active Cache Synchronization
Andrey Kolobov, Sebastien Bubeck, Julian Zimmert
Existing multi-armed bandit (MAB) models make two implicit assumptions: an arm generates a payoff only when it is played, and the agent observes every payoff that is generated. This paper introduces synchronization bandits, a MAB variant where all arms generate costs at all times, but the agent observes an arm's instantaneous cost only when the arm is played. Synchronization MABs are inspired by online caching scenarios such as Web crawling, where an arm corresponds to a cached item and playing the arm means downloading its fresh copy from a server. We present MirrorSync, an online learning algorithm for synchronization bandits, establish an adversarial regret of $O(T^{2/3})$ for it, and show how to make it practical.
Explaining Groups of Points in Low-Dimensional Representations
Gregory Plumb, Jonathan Terhorst, Sriram Sankararaman, Ameet Talwalkar

A common workflow in data exploration is to learn a low-dimensional representation of the data, identify groups of points in that representation, and examine the differences between the groups to determine what they represent. We treat this workflow as an interpretable machine learning problem by leveraging the model that learned the low-dimensional representation to help identify the key differences between the groups. To solve this problem, we introduce a new type of explanation, a Global Counterfactual Explanation (GCE), and our algorithm, Transitive Global Translations (TGT), for computing GCEs. TGT identifies the differences between each pair of groups using compressed sensing but constrains those pairwise differences to be consistent among all of the groups. Empirically, we demonstrate that TGT is able to identify explanations that accurately explain the model while being relatively sparse, and that these explanations match real patterns in the data.

Min-Max Optimization without Gradients: Convergence and Applications to Black-Box Evasion and Poisoning Attacks
Sijia Liu, Songtao Lu, Xiangyi Chen, Yao Feng, Kaidi Xu, Abdullah Al-Dujaili, Mingyi Hong, Una-May O'Reilly

In this paper, we study the problem of constrained min-max optimization in a black-box setting, where the desired optimizer cannot access the gradients of the objective function but may query its values. We present a principled optimization framework, integrating a zeroth-order (ZO) gradient estimator with an alternating projected stochastic gradient descent-ascent method, where the former only requires a small number of function queries and the later needs just one-step descent/ascent update. We show that the proposed framework, referred to as ZO-Min-Max, has a sublinear convergence rate under mild conditions and scales gracefully with problem size. We also explore a promising connection between black-box min-max optimization and black-box evasion and poisoning attacks in adversarial machine learning (ML). Our empirical evaluations on these use cases demonstrate the effectiveness of our approach and its scalability to dimensions that prohibit using recent black-box solvers.

Q-value Path Decomposition for Deep Multiagent Reinforcement Learning
Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen, Yujing Hu, Changjie Fan, Zhongyu Wei

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm and during centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

Semismooth Newton Algorithm for Efficient Projections onto $\ell_{1, \infty}$-norm Ball
Dejun Chu, Changshui Zhang, Shiliang Sun, Qing Tao
Structured sparsity-inducing $\ell_{1, \infty}$-norm, as a generalization of the classical $\ell_1$-norm, plays an important role in jointly sparse models which select or remove simultaneously all the variables forming a group. However, its resulting problem is more difficult to solve than the conventional $\ell_1$-norm constrained problem. In this paper, we propose an efficient algorithm for Euclidean projection onto $\ell_{1, \infty}$-norm ball. We tackle the projection problem via semismooth Newton algorithm to solve the system of semismooth equations. Meanwhile, exploiting the structure of Jacobian matrix via LU decomposition yields an equivalent algorithm which is proved to terminate after a finite number of iterations. Empirical studies demonstrate that our proposed algorithm outperforms the existing state-of-the-art solver and is promising for the optimization of learning problems with $\ell_{1, \infty}$-norm ball constraint.
Confidence-Aware Learning for Deep Neural Networks
Jooyoung Moon, Jihyo Kim, Younghak Shin, Sangheum Hwang

Despite the power of deep neural networks for a wide range of tasks, an overconfident prediction issue has limited their practical use in many safety-critical applications. Many recent works have been proposed to mitigate this issue, but most of them require either additional computational costs in training and/or inference phases or customized architectures to output confidence estimates separately. In this paper, we propose a method of training deep neural networks with a novel loss function, named Correctness Ranking Loss, which regularizes class probabilities explicitly to be better confidence estimates in terms of ordinal ranking according to confidence. The proposed method is easy to implement and can be applied to the existing architectures without any modification. Also, it has almost the same computational costs for training as conventional deep classifiers and outputs reliable predictions by a single inference. Extensive experimental results on classification benchmark datasets indicate that the proposed method helps networks to produce well-ranked confidence estimates. We also demonstrate that it is effective for the tasks closely related to confidence estimation, out-of-distribution detection and active learning.

Provably Efficient Exploration in Policy Optimization
Qi Cai, Zhuoran Yang, Chi Jin, Zhaoran Wang
While policy-based reinforcement learning (RL) achieves tremendous successes in practice, it is significantly less understood in theory, especially compared with value-based RL. In particular, it remains elusive how to design a provably efficient policy optimization algorithm that incorporates exploration. To bridge such a gap, this paper proposes an \underline{O}ptimistic variant of the \underline{P}roximal \underline{P}olicy \underline{O}ptimization algorithm (OPPO), which follows an ``optimistic version'' of the policy gradient direction. This paper proves that, in the problem of episodic Markov decision process with unknown transition and full-information feedback of adversarial reward, OPPO achieves an $\tilde{O}(\sqrt{|\cS|^2|\cA|H^3 T})$ regret. Here $|\cS|$ is the size of the state space, $|\cA|$ is the size of the action space, $H$ is the episode horizon, and $T$ is the total number of steps. To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
LTF: A Label Transformation Framework for Correcting Label Shift
Jiaxian Guo, Mingming Gong, Tongliang Liu, Kun Zhang, Dacheng Tao
Distribution shift is a major obstacle to the deployment of current deep learning models on real-world problems. Let $Y$ be the class label and $X$ the features. We focus on one type of distribution shift, \textit{ label shift}, where the label marginal distribution $P_Y$ changes but the conditional distribution $P_{X|Y}$ does not. Most existing methods estimate the density ratio between the source- and target-domain label distributions by density matching. However, these methods are either computationally infeasible for large-scale data or restricted to shift correction for discrete labels. In this paper, we propose an end-to-end Label Transformation Framework (LTF) for correcting label shift, which implicitly models the shift of $P_Y$ and the conditional distribution $P_{X|Y}$ using neural networks. Thanks to the flexibility of deep networks, our framework can handle continuous, discrete, and even multi-dimensional labels in a unified way and is scalable to large data. Moreover, for high dimensional $X$, such as images, we find that the redundant information in $X$ severely degrades the estimation accuracy. To remedy this issue, we propose to match the distribution implied by our generative model and the target-domain distribution in a low-dimensional feature space that discards information irrelevant to $Y$. Both theoretical and empirical studies …
Minimax Rate for Learning From Pairwise Comparisons in the BTL Model
Julien Hendrickx, Alex Olshevsky, Venkatesh Saligrama

We consider the problem of learning the qualities w1, ... , wn of a collection of items by performing noisy comparisons among them. We assume there is a fixed ``comparison graph'' and every neighboring pair of items is compared k times. We will study the popular Bradley-Terry-Luce model, where the probability that item i wins a comparison against j equals wi/(wi + wj). We are interested in how the expected error in estimating the vector w = (w1, ... , w_n) behaves in the regime when the number of comparisons k is large.

Our contribution is the determination of the minimax rate up to a constant factor. We show that this rate is achieved by a simple algorithm based on weighted least squares, with weights determined from the empirical outcomes of the comparisons. This algorithm can be implemented in nearly linear time in the total number of comparisons.

Contrastive Multi-View Representation Learning on Graphs
Kaveh Hassani, Amir Hosein Khasahmadi

We introduce a self-supervised approach for learning node and graph level representations by contrasting structural views of graphs. We show that unlike visual representation learning, increasing the number of views to more than two or contrasting multi-scale encodings do not improve performance, and the best performance is achieved by contrasting encodings from first-order neighbors and a graph diffusion. We achieve new state-of-the-art results in self-supervised learning on 8 out of 8 node and graph classification benchmarks under the linear evaluation protocol. For example, on Cora (node) and Reddit-Binary (graph) classification benchmarks, we achieve 86.8% and 84.5% accuracy, which are 5.5% and 2.4% relative improvements over previous state-of-the-art. When compared to supervised baselines, our approach outperforms them in 4 out of 8 benchmarks.

Differentiating through the Fréchet Mean
Aaron Lou, Isay Katsman, Qingxuan Jiang, Serge Belongie, Sernam Lim Lim, Christopher De Sa

Recent advances in deep representation learning on Riemannian manifolds extend classical deep learning operations to better capture the geometry of the manifold. One possible extension is the Fréchet mean, the generalization of the Euclidean mean; however, it has been difficult to apply because it lacks a closed form with an easily computable derivative. In this paper, we show how to differentiate through the Fréchet mean for arbitrary Riemannian manifolds. Then, focusing on hyperbolic space, we derive explicit gradient expressions and a fast, accurate, and hyperparameter-free Fréchet mean solver. This fully integrates the Fréchet mean into the hyperbolic neural network pipeline. To demonstrate this integration, we present two case studies. First, we apply our Fréchet mean to the existing Hyperbolic Graph Convolutional Network, replacing its projected aggregation to obtain state-of-the-art results on datasets with high hyperbolicity. Second, to demonstrate the Fréchet mean's capacity to generalize Euclidean neural network operations, we develop a hyperbolic batch normalization method that gives an improvement parallel to the one observed in the Euclidean setting.

Asynchronous Coagent Networks
James Kostas, Chris Nota, Philip Thomas

Coagent policy gradient algorithms (CPGAs) are reinforcement learning algorithms for training a class of stochastic neural networks called coagent networks. In this work, we prove that CPGAs converge to locally optimal policies. Additionally, we extend prior theory to encompass asynchronous and recurrent coagent networks. These extensions facilitate the straightforward design and analysis of hierarchical reinforcement learning algorithms like the option-critic, and eliminate the need for complex derivations of customized learning rules for these algorithms.

Accelerated Stochastic Gradient-free and Projection-free Methods
Feihu Huang, Lue Tao, Songcan Chen
In the paper, we propose a class of accelerated stochastic gradient-free and projection-free (a.k.a., zeroth-order Frank-Wolfe) methods to solve the constrained stochastic and finite-sum nonconvex optimization. Specifically, we propose an accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW) method based on the variance reduced technique of SPIDER/SpiderBoost and a novel momentum accelerated technique. Moreover, under some mild conditions, we prove that the Acc-SZOFW has the function query complexity of $O(d\sqrt{n}\epsilon^{-2})$ for finding an $\epsilon$-stationary point in the finite-sum problem, which improves the exiting best result by a factor of $O(\sqrt{n}\epsilon^{-2})$, and has the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem, which improves the exiting best result by a factor of $O(\epsilon^{-1})$. To relax the large batches required in the Acc-SZOFW, we further propose a novel accelerated stochastic zeroth-order Frank-Wolfe (Acc-SZOFW*) based on a new variance reduced technique of STORM, which still reaches the function query complexity of $O(d\epsilon^{-3})$ in the stochastic problem without relying on any large batches. In particular, we present an accelerated framework of the Frank-Wolfe methods based on the proposed momentum accelerated technique. The extensive experimental results on black-box adversarial attack and robust black-box classification demonstrate the efficiency of our algorithms.
Random Hypervolume Scalarizations for Provable Multi-Objective Black Box Optimization
Richard Zhang, Daniel Golovin
Single-objective black box optimization (also known as zeroth-order optimization) is the process of minimizing a scalar objective $f(x)$, given evaluations at adaptively chosen inputs $x$. In this paper, we consider multi-objective optimization, where $f(x)$ outputs a vector of possibly competing objectives and the goal is to converge to the Pareto frontier. Quantitatively, we wish to maximize the standard \emph{hypervolume indicator} metric, which measures the dominated hypervolume of the entire set of chosen inputs. In this paper, we introduce a novel scalarization function, which we term the \emph{hypervolume scalarization}, and show that drawing random scalarizations from an appropriately chosen distribution can be used to efficiently approximate the \emph{hypervolume indicator} metric. We utilize this connection to show that Bayesian optimization with our scalarization via common acquisition functions, such as Thompson Sampling or Upper Confidence Bound, provably converges to the whole Pareto frontier by deriving tight \emph{hypervolume regret} bounds on the order of $\widetilde{O}(\sqrt{T})$. Furthermore, we highlight the general utility of our scalarization framework by showing that any provably convergent single-objective optimization process can be converted to a multi-objective optimization process with provable convergence guarantees.
An end-to-end Differentially Private Latent Dirichlet Allocation Using a Spectral Algorithm
Chris DeCarolis, Mukul A Ram, Seyed Esmaeili, Yu-Xiang Wang, Furong Huang

We provide an end-to-end differentially private spectral algorithm for learning LDA, based on matrix/tensor decompositions, and establish theoretical guarantees on utility/consistency of the estimated model parameters. We represent the spectral algorithm as a computational graph. Noise can be injected along the edges of this graph to obtain differential privacy. We identify subsets of edges, named ``configurations'', such that adding noise to all edges in such a subset guarantees differential privacy of the end-to-end spectral algorithm. We characterize the sensitivity of the edges with respect to the input and thus estimate the amount of noise to be added to each edge for any required privacy level. We then characterize the utility loss for each configuration as a function of injected noise. Overall, by combining the sensitivity and utility characterization, we obtain an end-to-end differentially private spectral algorithm for LDA and identify which configurations outperform others under specific regimes. We are the first to achieve utility guarantees under a required level of differential privacy for learning in LDA. We additionally show that our method systematically outperforms differentially private variational inference.

Customizing ML Predictions for Online Algorithms
Keerti Anand, Rong Ge, Debmalya Panigrahi

A popular line of recent research incorporates ML advice in the design of online algorithms to improve their performance in typical instances. These papers treat the ML algorithm as a black-box, and redesign online algorithms to take advantage of ML predictions. In this paper, we ask the complementary question: can we redesign ML algorithms to provide better predictions for online algorithms? We explore this question in the context of the classic rent-or-buy problem, and show that incorporating optimization benchmarks in ML loss functions leads to significantly better performance, while maintaining a worst-case adversarial result when the advice is completely wrong. We support this finding both through theoretical bounds and numerical simulations.

Variational Bayesian Quantization
Yibo Yang, Robert Bamler, Stephan Mandt

We propose a novel algorithm for quantizing continuous latent representations in trained models. Our approach applies to deep probabilistic models, such as variational autoencoders (VAEs), and enables both data and model compression. Unlike current end-to-end neural compression methods that cater the model to a fixed quantization scheme, our algorithm separates model design and training from quantization. Consequently, our algorithm enables ``plug-and-play'' compression at variable rate-distortion trade-off, using a single trained model. Our algorithm can be seen as a novel extension of arithmetic coding to the continuous domain, and uses adaptive quantization accuracy based on estimates of posterior uncertainty. Our experimental results demonstrate the importance of taking into account posterior uncertainties, and show that image compression with the proposed algorithm outperforms JPEG over a wide range of bit rates using only a single standard VAE. Further experiments on Bayesian neural word embeddings demonstrate the versatility of the proposed method.

Evaluating Lossy Compression Rates of Deep Generative Models
Sicong Huang, Alireza Makhzani, Yanshuai Cao, Roger Grosse

The field of deep generative modeling has succeeded in producing astonishingly realistic-seeming images and audio, but quantitative evaluation remains a challenge. Log-likelihood is an appealing metric due to its grounding in statistics and information theory, but it can be challenging to estimate for implicit generative models, and scalar-valued metrics give an incomplete picture of a model's quality. In this work, we propose to use rate distortion (RD) curves to evaluate and compare deep generative models. While estimating RD curves is seemingly even more computationally demanding than log-likelihood estimation, we show that we can approximate the entire RD curve using nearly the same computations as were previously used to achieve a single log-likelihood estimate. We evaluate lossy compression rates of VAEs, GANs, and adversarial autoencoders (AAEs) on the MNIST and CIFAR10 datasets. Measuring the entire RD curve gives a more complete picture than scalar-valued metrics, and we arrive at a number of insights not obtainable from log-likelihoods alone.

Zeno++: Robust Fully Asynchronous SGD
Cong Xie, Sanmi Koyejo, Indranil Gupta

We propose Zeno++, a new robust asynchronous Stochastic Gradient Descent(SGD) procedure, intended to tolerate Byzantine failures of workers. In contrast to previous work, Zeno++ removes several unrealistic restrictions on worker-server communication, now allowing for fully asynchronous updates from anonymous workers, for arbitrarily stale worker updates, and for the possibility of an unbounded number of Byzantine workers. The key idea is to estimate the descent of the loss value after the candidate gradient is applied, where large descent values indicate that the update results in optimization progress. We prove the convergence of Zeno++ for non-convex problems under Byzantine failures. Experimental results show that Zeno++ outperforms existing Byzantine-tolerant asynchronous SGD algorithms.

On the Global Optimality of Model-Agnostic Meta-Learning
Lingxiao Wang, Qi Cai, Zhuoran Yang, Zhaoran Wang

Model-agnostic meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior, while the outer level searches for the optimal shared prior by optimizing its aggregated performance over all the subtasks. Despite its empirical success, MAML remains less understood in theory, especially in terms of its global optimality, due to the nonconvexity of the meta-objective (the outer-level objective). To bridge such a gap between theory and practice, we characterize the optimality gap of the stationary points attained by MAML for both reinforcement learning and supervised learning, where the inner-level and outer-level problems are solved via first-order optimization methods. In particular, our characterization connects the optimality gap of such stationary points with (i) the functional geometry of inner-level objectives and (ii) the representation power of function approximators, including linear models and neural networks. To the best of our knowledge, our analysis establishes the global optimality of MAML with nonconvex meta-objectives for the first time.

Training Binary Neural Networks through Learning with Noisy Supervision
Kai Han, Yunhe Wang, Yixing Xu, Chunjing Xu, Enhua Wu, Chang Xu

This paper formalizes the binarization operations over neural networks from a learning perspective. In contrast to classical hand crafted rules (\eg hard thresholding) to binarize full-precision neurons, we propose to learn a mapping from full-precision neurons to the target binary ones. Each individual weight entry will not be binarized independently. Instead, they are taken as a whole to accomplish the binarization, just as they work together in generating convolution features. To help the training of the binarization mapping, the full-precision neurons after taking sign operations is regarded as some auxiliary supervision signal, which is noisy but still has valuable guidance. An unbiased estimator is therefore introduced to mitigate the influence of the supervision noise. Experimental results on benchmark datasets indicate that the proposed binarization technique attains consistent improvements over baselines.

Expert Learning through Generalized Inverse Multiobjective Optimization: Models, Insights, and Algorithms
Chaosheng Dong, Bo Zeng

We consider a new unsupervised learning task of inferring parameters of a multiobjective decision making model, based on a set of observed decisions from the human expert. This setting is important in applications (such as the task of portfolio management) where it may be difficult to obtain the human expert's intrinsic decision making model. We formulate such a learning problem as an inverse multiobjective optimization problem (IMOP) and propose its first sophisticated model with statistical guarantees. Then, we reveal several fundamental connections between IMOP, K-means clustering, and manifold learning. Leveraging these critical insights and connections, we propose two algorithms to solve IMOP through manifold learning and clustering. Numerical results confirm the effectiveness of our model and the computational efficacy of algorithms.

On Variational Learning of Controllable Representations for Text without Supervision
Peng Xu, Jackie Chi Kit Cheung, Yanshuai Cao

The variational autoencoder (VAE) can learn the manifold of natural images on certain datasets, as evidenced by meaningful interpolating or extrapolating in the continuous latent space. However, on discrete data such as text, it is unclear if unsupervised learning can discover similar latent space that allows controllable manipulation. In this work, we find that sequence VAEs trained on text fail to properly decode when the latent codes are manipulated, because the modified codes often land in holes or vacant regions in the aggregated posterior latent space, where the decoding network fails to generalize. Both as a validation of the explanation and as a fix to the problem, we propose to constrain the posterior mean to a learned probability simplex, and performs manipulation within this simplex. Our proposed method mitigates the latent vacancy problem and achieves the first success in unsupervised learning of controllable representations for text. Empirically, our method outperforms unsupervised baselines and strong supervised approaches on text style transfer. On automatic evaluation metrics used in text style transfer, even with the decoding network trained from scratch, our method achieves comparable results with state-of-the-art supervised approaches leveraging large-scale pre-trained models for generation. Furthermore, it is capable of performing more flexible …

Streaming Submodular Maximization under a k-Set System Constraint
Ran Haba, Ehsan Kazemi, Moran Feldman, Amin Karbasi
In this paper, we propose a novel framework that converts streaming algorithms for monotone submodular maximization into streaming algorithms for non-monotone submodular maximization. This reduction readily leads to the currently tightest deterministic approximation ratio for submodular maximization subject to a $k$-matchoid constraint. Moreover, we propose the first streaming algorithm for monotone submodular maximization subject to $k$-extendible and $k$-set system constraints. Together with our proposed reduction, we obtain $O(k\log k)$ and $O(k^2\log k)$ approximation ratio for submodular maximization subject to the above constraints, respectively. We extensively evaluate the empirical performance of our algorithm against the existing work in a series of experiments including finding the maximum independent set in randomly generated graphs, maximizing linear functions over social networks, movie recommendation, Yelp location summarization, and Twitter data summarization.

Poster Session 2 Tue 14 Jul 08:00 a.m.  

Learning Fair Policies in Multi-Objective (Deep) Reinforcement Learning with Average and Discounted Rewards
Umer Siddique, Paul Weng, Matthieu Zimmer

As the operations of autonomous systems generally affect simultaneously several users, it is crucial that their designs account for fairness considerations. In contrast to standard (deep) reinforcement learning (RL), we investigate the problem of learning a policy that treats its users equitably. In this paper, we formulate this novel RL problem, in which an objective function, which encodes a notion of fairness that we formally define, is optimized. For this problem, we provide a theoretical discussion where we examine the case of discounted rewards and that of average rewards. During this analysis, we notably derive a new result in the standard RL setting, which is of independent interest: it states a novel bound on the approximation error with respect to the optimal average reward of that of a policy optimal for the discounted reward. Since learning with discounted rewards is generally easier, this discussion further justifies finding a fair policy for the average reward by learning a fair policy for the discounted reward. Thus, we describe how several classic deep RL algorithms can be adapted to our fair optimization problem, and we validate our approach with extensive experiments in three different domains.

Estimating the Number and Effect Sizes of Non-null Hypotheses
Jennifer Brennan, Ramya Korlakai Vinayak, Kevin Jamieson

We study the problem of estimating the distribution of effect sizes (the mean of the test statistic under the alternate hypothesis) in a multiple testing setting. Knowing this distribution allows us to calculate the power (type II error) of any experimental design. We show that it is possible to estimate this distribution using an inexpensive pilot experiment, which takes significantly fewer samples than would be required by an experiment that identified the discoveries. Our estimator can be used to guarantee the number of discoveries that will be made using a given experimental design in a future experiment. We prove that this simple and computationally efficient estimator enjoys a number of favorable theoretical properties, and demonstrate its effectiveness on data from a gene knockout experiment on influenza inhibition in Drosophila.

Adversarial Neural Pruning with Latent Vulnerability Suppression
Divyam Madaan, Jinwoo Shin, Sung Ju Hwang

Despite the remarkable performance of deep neural networks on various computer vision tasks, they are known to be susceptible to adversarial perturbations, which makes it challenging to deploy them in real-world safety-critical applications. In this paper, we conjecture that the leading cause of adversarial vulnerability is the distortion in the latent feature space, and provide methods to suppress them effectively. Explicitly, we define \emph{vulnerability} for each latent feature and then propose a new loss for adversarial learning, \emph{Vulnerability Suppression (VS)} loss, that aims to minimize the feature-level vulnerability during training. We further propose a Bayesian framework to prune features with high vulnerability to reduce both vulnerability and loss on adversarial samples. We validate our \emph{Adversarial Neural Pruning with Vulnerability Suppression (ANP-VS)} method on multiple benchmark datasets, on which it not only obtains state-of-the-art adversarial robustness but also improves the performance on clean examples, using only a fraction of the parameters used by the full network. Further qualitative analysis suggests that the improvements come from the suppression of feature-level vulnerability.

GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values
Shangtong Zhang, Bo Liu, Shimon Whiteson

We present GradientDICE for estimating the density ratio between the state distribution of the target policy and the sampling distribution in off-policy reinforcement learning. GradientDICE fixes several problems of GenDICE (Zhang et al., 2020), the current state-of-the-art for estimating such density ratios. Namely, the optimization problem in GenDICE is not a convex-concave saddle-point problem once nonlinearity in optimization variable parameterization is introduced to ensure positivity, so primal-dual algorithms are not guaranteed to find the desired solution. However, such nonlinearity is essential to ensure the consistency of GenDICE even with a tabular representation. This is a fundamental contradiction, resulting from GenDICE's original formulation of the optimization problem. In GradientDICE, we optimize a different objective from GenDICE by using the Perron-Frobenius theorem and eliminating GenDICE's use of divergence, such that nonlinearity in parameterization is not necessary for GradientDICE, which is provably convergent under linear function approximation.

Angular Visual Hardness
Beidi Chen, Weiyang Liu, Zhiding Yu, Jan Kautz, Anshumali Shrivastava, Animesh Garg, Anima Anandkumar

Recent convolutional neural networks (CNNs) have led to impressive performance but often suffer from poor calibration. They tend to be overconfident, with the model confidence not always reflecting the underlying true ambiguity and hardness. In this paper, we propose angular visual hardness (AVH), a score given by the normalized angular distance between the sample feature embedding and the target classifier to measure sample hardness. We validate this score with an in-depth and extensive scientific study, and observe that CNN models with the highest accuracy also have the best AVH scores. This agrees with an earlier finding that state-of-art models improve on the classification of harder examples. We observe that the training dynamics of AVH is vastly different compared to the training loss. Specifically, AVH quickly reaches a plateau for all samples even though the training loss keeps improving. This suggests the need for designing better loss functions that can target harder examples more effectively. We also find that AVH has a statistically significant correlation with human visual hardness. Finally, we demonstrate the benefit of AVH to a variety of applications such as self-training for domain adaptation and domain generalization.

Stronger and Faster Wasserstein Adversarial Attacks
Kaiwen Wu, Allen Wang, Yaoliang Yu
Deep models, while being extremely flexible and accurate, are surprisingly vulnerable to ``small, imperceptible'' perturbations known as adversarial attacks. While the majority of existing attacks focuses on measuring perturbations under the $\ell_p$ metric, Wasserstein distance, which takes geometry in pixel space into account, has long known to be a better metric for measuring image quality and has recently risen as a compelling alternative to the $\ell_p$ metric in adversarial attacks. However, constructing an effective attack under the Wasserstein metric is computationally much more challenging and calls for better optimization algorithms. We address this gap in two ways: (a) we develop an exact yet efficient projection operator to enable a stronger projected gradient attack; (b) we show for the first time that Frank-Wolfe method equipped with a suitable linear minimization oracle works extremely fast under Wasserstein constraints. Our algorithms not only converge faster but also generate much stronger attacks. For instance, we decrease the accuracy of a residual network on CIFAR-10 to $3.4\%$ within a Wasserstein perturbation ball of radius $0.005$, in contrast to $65.5\%$ using the previous state-of-the-art attack based on approximate projection. We show that applying our stronger attacks in adversarial training significantly improves the robustness of adversarially trained …
Oracle Efficient Private Non-Convex Optimization
Seth Neel, Aaron Roth, Giuseppe Vietri, Steven Wu

One of the most effective algorithms for differentially private learning and optimization is \emph{objective perturbation}. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it. However, to date, analyses of this approach crucially rely on the convexity and smoothness of the objective function. We give two algorithms that extend this approach substantially. The first algorithm requires nothing except boundedness of the loss function, and operates over a discrete domain. Its privacy and accuracy guarantees hold even without assuming convexity. We are able to extend traditional analyses of objective perturbation by introducing a novel normalization step into the algorithm, which provides enough stability to be differentially private even without second-order conditions. The second algorithm operates over a continuous domain and requires only that the loss function be bounded and Lipschitz in its continuous parameter. Its privacy analysis does not even require convexity. Its accuracy analysis does require convexity, but does not require second order conditions like smoothness. We complement our theoretical results with an empirical evaluation of the non-convex case, in which we use an integer program solver as our optimization oracle. We find that for the problem …

Guided Learning of Nonconvex Models through Successive Functional Gradient Optimization
Rie Johnson, Tong Zhang

This paper presents a framework of successive functional gradient optimization for training nonconvex models such as neural networks, where training is driven by mirror descent in a function space. We provide a theoretical analysis and empirical study of the training method derived from this framework. It is shown that the method leads to better performance than that of standard training techniques.

Uncertainty-Aware Lookahead Factor Models for Quantitative Investing
Lakshay Chauhan, John Alberg, Zachary Lipton

On a periodic basis, publicly traded companies report fundamentals, financial data including revenue, earnings, debt, among others. Quantitative finance research has identified several factors, functions of the reported data that historically correlate with stock market performance. In this paper, we first show through simulation that if we could select stocks via factors calculated on future fundamentals (via oracle), that our portfolios would far outperform standard factor models. Motivated by this insight, we train deep nets to forecast future fundamentals from a trailing 5-year history. We propose lookahead factor models which plug these predicted future fundamentals into traditional factors. Finally, we incorporate uncertainty estimates from both neural heteroscedastic regression and a dropout-based heuristic, improving performance by adjusting our portfolios to avert risk. In retrospective analysis, we leverage an industry-grade portfolio simulator (backtester) to show simultaneous improvement in annualized return and Sharpe ratio. Specifically, the simulated annualized return for the uncertainty-aware model is 17.7% (vs 14.0% for a standard factor model) and the Sharpe ratio is 0.84 (vs 0.52).

FormulaZero: Distributionally Robust Online Adaptation via Offline Population Synthesis
Aman Sinha, Matthew O'Kelly, Hongrui Zheng, Rahul Mangharam, John Duchi, Russ Tedrake

Balancing performance and safety is crucial to deploying autonomous vehicles in multi-agent environments. In particular, autonomous racing is a domain that penalizes safe but conservative policies, highlighting the need for robust, adaptive strategies. Current approaches either make simplifying assumptions about other agents or lack robust mechanisms for online adaptation. This work makes algorithmic contributions to both challenges. First, to generate a realistic, diverse set of opponents, we develop a novel method for self-play based on replica-exchange Markov chain Monte Carlo. Second, we propose a distributionally robust bandit optimization procedure that adaptively adjusts risk aversion relative to uncertainty in beliefs about opponents’ behaviors. We rigorously quantify the tradeoffs in performance and robustness when approximating these computations in real-time motion-planning, and we demonstrate our methods experimentally on autonomous vehicles that achieve scaled speeds comparable to Formula One racecars.

Closing the convergence gap of SGD without replacement
Shashank Rajput, Anant Gupta, Dimitris Papailiopoulos
Stochastic gradient descent without replacement sampling is widely used in practice for model training. However, the vast majority of SGD analyses assumes data is sampled with replacement, and when the function minimized is strongly convex, an $\mathcal{O}\left(\frac{1}{T}\right)$ rate can be established when SGD is run for $T$ iterations. A recent line of breakthrough works on SGD without replacement (SGDo) established an $\mathcal{O}\left(\frac{n}{T^2}\right)$ convergence rate when the function minimized is strongly convex and is a sum of $n$ smooth functions, and an $\mathcal{O}\left(\frac{1}{T^2}+\frac{n^3}{T^3}\right)$ rate for sums of quadratics. On the other hand, the tightest known lower bound postulates an $\Omega\left(\frac{1}{T^2}+\frac{n^2}{T^3}\right)$ rate, leaving open the possibility of better SGDo convergence rates in the general case. In this paper, we close this gap and show that SGD without replacement achieves a rate of $\mathcal{O}\left(\frac{1}{T^2}+\frac{n^2}{T^3}\right)$ when the sum of the functions is a quadratic, and offer a new lower bound of $\Omega\left(\frac{n}{T^2}\right)$ for strongly convex functions that are sums of smooth functions.
An end-to-end approach for the verification problem: learning the right distance
Joao Monteiro, Isabela Albuquerque, Jahangir Alam, R Devon Hjelm, Tiago Falk

In this contribution, we augment the metric learning setting by introducing a parametric pseudo-distance, trained jointly with the encoder. Several interpretations are thus drawn for the learned distance-like model's output. We first show it approximates a likelihood ratio which can be used for hypothesis tests, and that it further induces a large divergence across the joint distributions of pairs of examples from the same and from different classes. Evaluation is performed under the verification setting consisting of determining whether sets of examples belong to the same class, even if such classes are novel and were never presented to the model during training. Empirical evaluation shows such method defines an end-to-end approach for the verification problem, able to attain better performance than simple scorers such as those based on cosine similarity and further outperforming widely used downstream classifiers. We further observe training is much simplified under the proposed approach compared to metric learning with actual distances, requiring no complex scheme to harvest pairs of examples.

Discount Factor as a Regularizer in Reinforcement Learning
Ron Amit, Ron Meir, Kamil Ciosek

Specifying a Reinforcement Learning (RL) task involves choosing a suitable planning horizon, which is typically modeled by a discount factor. It is known that applying RL algorithms with a lower discount factor can act as a regularizer, improving performance in the limited data regime. Yet the exact nature of this regularizer has not been investigated. In this work, we fill in this gap. For several Temporal-Difference (TD) learning methods, we show an explicit equivalence between using a reduced discount factor and adding an explicit regularization term to the algorithm's loss. Motivated by the equivalence, we empirically study this technique compared to standard L2 regularization by extensive experiments in discrete and continuous domains, using tabular and functional representations. Our experiments suggest the regularization effectiveness is strongly related to properties of the available data, such as size, distribution, and mixing rate.

Detecting Out-of-Distribution Examples with Gram Matrices
Chandramouli Shama Sastry, Sageev Oore

When presented with Out-of-Distribution (OOD) examples, deep neural networks yield confident, incorrect predictions; detecting OOD examples is challenging, and the potential risks are high. In this paper, we propose to detect OOD examples by identifying inconsistencies between activity patterns and predicted class. We find that characterizing activity patterns by Gram matrices and identifying anomalies in Gram matrix values can yield high OOD detection rates. We identify anomalies in the Gram matrices by simply comparing each value with its respective range observed over the training data. Unlike many approaches, this can be used with any pre-trained softmax classifier and neither requires access to OOD data for fine-tuning hyperparameters, nor does it require OOD access for inferring parameters. We empirically demonstrate applicability across a variety of architectures and vision datasets and, for the important and surprisingly hard task of detecting far out-of-distribution examples, it generally performs better than or equal to state-of-the-art OOD detection methods (including those that do assume access to OOD examples).

DROCC: Deep Robust One-Class Classification
Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, Prateek Jain

Classical approaches for one-class problems such as one-class SVM and isolation forest require careful feature engineering when applied to structured domains like images. State-of-the-art methods aim to leverage deep learning to learn appropriate features via two main approaches. The first approach based on predicting transformations (Golan & El-Yaniv, 2018; Hendrycks et al., 2019a) while successful in some domains, crucially depends on an appropriate domain-specific set of transformations that are hard to obtain in general. The second approach of minimizing a classical one-class loss on the learned final layer representations, e.g., DeepSVDD (Ruff et al., 2018) suffers from the fundamental drawback of representation collapse. In this work, we propose Deep Robust One Class Classification (DROCC) that is both applicable to most standard domains without requiring any side-information and robust to representation collapse. DROCC is based on the assumption that the points from the class of interest lie on a well-sampled, locally linear low dimensional manifold. Empirical evaluation demonstrates that DROCC is highly effective in two different one-class problem settings and on a range of real-world datasets across different domains: tabular data, images (CIFAR and ImageNet), audio, and time-series, offering up to 20% increase in accuracy over the state-of-the-art in anomaly detection.

Boosting for Control of Dynamical Systems
Naman Agarwal, Nataly Brukhim, Elad Hazan, Zhou Lu

We study the question of how to aggregate controllers for dynamical systems in order to improve their performance. To this end, we propose a framework of boosting for online control. Our main result is an efficient boosting algorithm that combines weak controllers into a provably more accurate one. Empirical evaluation on a host of control settings supports our theoretical findings.

Parameterized Rate-Distortion Stochastic Encoder
Quan Hoang, Trung Le, Dinh Phung

We propose a novel gradient-based tractable approach for the Blahut-Arimoto (BA) algorithm to compute the rate-distortion function where the BA algorithm is fully parameterized. This results in a rich and flexible framework to learn a new class of stochastic encoders, termed PArameterized RAte-DIstortion Stochastic Encoder (PARADISE). The framework can be applied to a wide range of settings from semi-supervised, multi-task to supervised and robust learning. We show that the training objective of PARADISE can be seen as a form of regularization that helps improve generalization. With an emphasis on robust learning we further develop a novel posterior matching objective to encourage smoothness on the loss function and show that PARADISE can significantly improve interpretability as well as robustness to adversarial attacks on the CIFAR-10 and ImageNet datasets. In particular, on the CIFAR-10 dataset, our model reduces standard and adversarial error rates in comparison to the state-of-the-art by 50% and 41%, respectively without the expensive computational cost of adversarial training.

Parametric Gaussian Process Regressors
Martin Jankowiak, Geoff Pleiss, Jacob Gardner

The combination of inducing point methods with stochastic variational inference has enabled approximate Gaussian Process (GP) inference on large datasets. Unfortunately, the resulting predictive distributions often exhibit substantially underestimated uncertainties. Notably, in the regression case the predictive variance is typically dominated by observation noise, yielding uncertainty estimates that make little use of the input-dependent function uncertainty that makes GP priors attractive. In this work we propose two simple methods for scalable GP regression that address this issue and thus yield substantially improved predictive uncertainties. The first applies variational inference to FITC (Fully Independent Training Conditional; Snelson et. al. 2006). The second bypasses posterior approximations and instead directly targets the posterior predictive distribution. In an extensive empirical comparison with a number of alternative methods for scalable GP regression, we find that the resulting predictive distributions exhibit significantly better calibrated uncertainties and higher log likelihoods--often by as much as half a nat per datapoint.

Feature Noise Induces Loss Discrepancy Across Groups
Fereshte Khani, Percy Liang
The performance of standard learning procedures has been observed to differ widely across groups. 
Recent studies usually attribute this loss discrepancy to an information deficiency for one group (e.g., one group has less data). 
In this work, we point to a more subtle source of loss discrepancy---feature noise. 
Our main result is that even when there is no information deficiency specific to one group (e.g., both groups have infinite data), adding the same amount of feature noise to all individuals leads to loss discrepancy.
For linear regression, we thoroughly characterize the effect of feature noise on loss discrepancy in terms of the amount of noise, the difference between moments of the two groups, and whether group information is used or not.
We then show this loss discrepancy does not vanish immediately if a shift in distribution causes the groups to have similar moments. 
On three real-world datasets, we show feature noise increases the loss discrepancy if groups have different distributions, while it does not affect the loss discrepancy on datasets that groups have similar distributions.
Batch Reinforcement Learning with Hyperparameter Gradients
Byung-Jun Lee, Jongmin Lee, Peter Vrancx, Dongho Kim, Kee-Eung Kim

We consider the batch reinforcement learning problem where the agent needs to learn only from a fixed batch of data, without further interaction with the environment. In such a scenario, we want to prevent the optimized policy from deviating too much from the data collection policy since the estimation becomes highly unstable otherwise due to the off-policy nature of the problem. However, imposing this requirement too strongly will result in a policy that merely follows the data collection policy. Unlike prior work where this trade-off is controlled by hand-tuned hyperparameters, we propose a novel batch reinforcement learning approach, batch optimization of policy and hyperparameter (BOPAH), that uses a gradient-based optimization of the hyperparameter using held-out data. We show that BOPAH outperforms other batch reinforcement learning algorithms in tabular and continuous control tasks, by finding a good balance to the trade-off between adhering to the data collection policy and pursuing the possible policy improvement.

Transfer Learning without Knowing: Reprogramming Black-box Machine Learning Models with Scarce Data and Limited Resources
Yun Yun Tsai, Pin-Yu Chen, Tsung-Yi Ho

Current transfer learning methods are mainly based on finetuning a pretrained model with target-domain data. Motivated by the techniques from adversarial machine learning (ML) that are capable of manipulating the model prediction via data perturbations, in this paper we propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box ML model (e.g., a prediction API or a proprietary software) for solving different ML tasks, especially in the scenario with scarce data and constrained resources. The rationale lies in exploiting high-performance but unknown ML models to gain learning capability for transfer learning. Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses without knowing the model architecture or changing any parameter. More importantly, in the limited medical data setting, on autism spectrum disorder classification, diabetic retinopathy detection, and melanoma detection tasks, BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method requiring complete knowledge of the target ML model. BAR also outperforms baseline transfer learning approaches by a significant margin, demonstrating cost-effective means and new insights for transfer learning.

AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Esteban Real, Chen Liang, David So, Quoc Le

Machine learning research has advanced in multiple aspects, including model structures and learning methods. The effort to automate such research, known as AutoML, has also made significant progress. However, this progress has largely focused on the architecture of neural networks, where it has relied on sophisticated expert-designed layers as building blocks---or similarly restrictive search spaces. Our goal is to show that AutoML can go further: it is possible today to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks. We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space. Despite the vastness of this space, evolutionary search can still discover two-layer neural networks trained by backpropagation. These simple neural networks can then be surpassed by evolving directly on tasks of interest, e.g. CIFAR-10 variants, where modern techniques emerge in the top algorithms, such as bilinear interactions, normalized gradients, and weight averaging. Moreover, evolution adapts algorithms to different task types: e.g., dropout-like techniques appear when little data is available. We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction for the field.

Strategyproof Mean Estimation from Multiple-Choice Questions
Anson Kahng, Gregory Kehne, Ariel Procaccia

Given n values possessed by n agents, we study the problem of estimating the mean by truthfully eliciting agents' answers to multiple-choice questions about their values. We consider two natural candidates for estimation error: mean squared error (MSE) and mean absolute error (MAE). We design a randomized estimator which is asymptotically optimal for both measures in the worst case. In the case where prior distributions over the agents' values are known, we give an optimal, polynomial-time algorithm for MSE, and show that the task of computing an optimal estimate for MAE is #P-hard. Finally, we demonstrate empirically that knowledge of prior distributions gives a significant edge.

Nonparametric Score Estimators
Yuhao Zhou, Jiaxin Shi, Jun Zhu

Estimating the score, i.e., the gradient of log density function, from a set of samples generated by an unknown distribution is a fundamental task in inference and learning of probabilistic models that involve flexible yet intractable densities. Kernel estimators based on Stein's methods or score matching have shown promise, however their theoretical properties and relationships have not been fully-understood. We provide a unifying view of these estimators under the framework of regularized nonparametric regression. It allows us to analyse existing estimators and construct new ones with desirable properties by choosing different hypothesis spaces and regularizers. A unified convergence analysis is provided for such estimators. Finally, we propose score estimators based on iterative regularization that enjoy computational benefits from curl-free kernels and fast convergence.

Generative Adversarial Imitation Learning with Neural Network Parameterization: Global Optimality and Convergence Rate
Yufeng Zhang, Qi Cai, Zhuoran Yang, Zhaoran Wang

Generative adversarial imitation learning (GAIL) demonstrates tremendous success in practice, especially when combined with neural networks. Different from reinforcement learning, GAIL learns both policy and reward function from expert (human) demonstration. Despite its empirical success, it remains unclear whether GAIL with neural networks converges to the globally optimal solution. The major difficulty comes from the nonconvex-nonconcave minimax optimization structure. To bridge the gap between practice and theory, we analyze a gradient-based algorithm with alternating updates and establish its sublinear convergence to the globally optimal solution. To the best of our knowledge, our analysis establishes the global optimality and convergence rate of GAIL with neural networks for the first time.

Is Local SGD Better than Minibatch SGD?
Blake Woodworth, Kumar Kshitij Patel, Sebastian Stich, Zhen Dai, Brian Bullins, Brendan McMahan, Ohad Shamir, Nati Srebro

We study local SGD (also known as parallel SGD and federated SGD), a natural and frequently used distributed optimization method. Its theoretical foundations are currently lacking and we highlight how all existing error guarantees in the convex setting are dominated by a simple baseline, minibatch SGD. (1) For quadratic objectives we prove that local SGD strictly dominates minibatch SGD and that accelerated local SGD is minmax optimal for quadratics; (2) For general convex objectives we provide the first guarantee that at least \emph{sometimes} improves over minibatch SGD, but our guarantee does not always improve over, nor even match, minibatch SGD; (3) We show that indeed local SGD does \emph{not} dominate minibatch SGD by presenting a lower bound on the performance of local SGD that is worse than the minibatch SGD guarantee.

Near-optimal sample complexity bounds for learning Latent $k-$polytopes and applications to Ad-Mixtures
Chiru Bhattacharyya, Ravindran Kannan
Deriving Optimal bounds on Sample Complexity of Latent Variable models is an active area of research. Recently such bounds were obtained for Mixture of Gaussians \cite{HSNCAY18}, no such results are known for Ad-mixtures, a generalization of Mixture distributions. In this paper we show that $O^*(dk/m)$ samples are sufficient to learn each of $k-$ topic vectors of LDA, a popular Ad-mixture model, with vocabulary size $d$ and $m\in \Omega(1)$ words per document, to any constant error in $L_1$ norm. The result is a corollary of the major contribution of this paper: the first sample complexity upper bound for the problem (introduced in \cite{BK20}) of learning the vertices of a Latent $k-$ Polytope in $\RR^d$, given perturbed points from it. The bound, $O^*(dk/\beta)$, is optimal and linear in number of parameters. It applies to many stochastic models including a broad class Ad-mixtures. To demonstrate the generality of the approach we specialize the setting to Mixed Membership Stochastic Block Models(MMSB) and show for the first time that if an MMSB has $k$ blocks, the sample complexity is $O^*(k^2)$ under usual assumptions.
Working Memory Graphs
Ricky Loynd, Roland Fernandez, Asli Celikyilmaz, Adith Swaminathan, Matthew Hausknecht

Transformers have increasingly outperformed gated RNNs in obtaining new state-of-the-art results on supervised tasks involving text sequences. Inspired by this trend, we study the question of how Transformer-based models can improve the performance of sequential decision-making agents. We present the Working Memory Graph (WMG), an agent that employs multi-head self-attention to reason over a dynamic set of vectors representing observed and recurrent state. We evaluate WMG in three environments featuring factored observation spaces: a Pathfinding environment that requires complex reasoning over past observations, BabyAI gridworld levels that involve variable goals, and Sokoban which emphasizes future planning. We find that the combination of WMG's Transformer-based architecture with factored observation spaces leads to significant gains in learning efficiency compared to baseline architectures across all tasks. WMG demonstrates how Transformer-based models can dramatically boost sample efficiency in RL environments for which observations can be factored.

Finite-Time Convergence in Continuous-Time Optimization
Orlando Romero, mouhacine Benosman

In this paper, we investigate a Lyapunov-like differential inequality that allows us to establish finite-time stability of a continuous-time state-space dynamical system represented via a multivariate ordinary differential equation or differential inclusion. Equipped with this condition, we successfully synthesize first and second-order dynamical systems that achieve finite-time convergence to the minima of a given sufficiently regular cost function. As a byproduct, we show that the p-rescaled gradient flow (p-RGF) proposed by Wibisono et al. (2016) is indeed finite-time convergent, provided the cost function is gradient dominated of order q in (1,p). Thus, we effectively bridge a gap between the p-RGF and the normalized gradient flow (NGF) (p=\infty) proposed by Cortes (2006) in his seminal paper in the context of multi-agent systems. We discuss strategies to discretize our proposed flows and conclude by conducting some numerical experiments to illustrate our results.

An EM Approach to Non-autoregressive Conditional Sequence Generation
Zhiqing Sun, Yiming Yang

Autoregressive (AR) models have been the dominating approach to conditional sequence generation, but are suffering from the issue of high inference latency. Non-autoregressive (NAR) models have been recently proposed to reduce the latency by generating all output tokens in parallel but could only achieve inferior accuracy compared to their autoregressive counterparts, primarily due to a difficulty in dealing with the multi-modality in sequence generation. This paper proposes a new approach that jointly optimizes both AR and NAR models in a unified Expectation-Maximization (EM) framework. In the E-step, an AR model learns to approximate the regularized posterior of the NAR model. In the M-step, the NAR model is updated on the new posterior and selects the training examples for the next AR model. This iterative process can effectively guide the system to remove the multi-modality in the output sequences. To our knowledge, this is the first EM approach to NAR sequence generation. We evaluate our method on the task of machine translation. Experimental results on benchmark data sets show that the proposed approach achieves competitive, if not better, performance with existing NAR models and significantly reduces the inference latency.

The Tree Ensemble Layer: Differentiability meets Conditional Computation
Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, Rahul Mazumder

Neural networks and tree ensembles are state-of-the-art learners, each with its unique statistical and computational advantages. We aim to combine these advantages by introducing a new layer for neural networks, composed of an ensemble of differentiable decision trees (a.k.a. soft trees). While differentiable trees demonstrate promising results in the literature, they are typically slow in training and inference as they do not support conditional computation. We mitigate this issue by introducing a new sparse activation function for sample routing, and implement true conditional computation by developing specialized forward and backward propagation algorithms that exploit sparsity. Our efficient algorithms pave the way for jointly training over deep and wide tree ensembles using first-order methods (e.g., SGD). Experiments on 23 classification datasets indicate over 10x speed-ups compared to the differentiable trees used in the literature and over 20x reduction in the number of parameters compared to gradient boosted trees, while maintaining competitive performance. Moreover, experiments on CIFAR, MNIST, and Fashion MNIST indicate that replacing dense layers in CNNs with our tree layer reduces the test loss by 7-53% and the number of parameters by 8x. We provide an open-source TensorFlow implementation with a Keras API.

RIFLE: Backpropagation in Depth for Deep Transfer Learning through Re-Initializing the Fully-connected LayEr
Xingjian Li, Haoyi Xiong, Haozhe An, Cheng-Zhong Xu, Dejing Dou

Fine-tuning the deep convolution neural network (CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task. While the accuracy could be largely improved even when the training dataset is small, the transfer learning outcome is similar with the pre-trained one with closed CNN weights[17], as the backpropagation here brings less updates to deeper CNN layers. In this work, we propose RIFLE - a simple yet effective strategy that deepens backpropagation in transfer learning settings, through periodically ReInitializing the Fully-connected LayEr with random scratch during the fine-tuning procedure. RIFLE brings significant perturbation to the backpropagation process and leads to deep CNN weights update, while the affects of perturbation can be easily converged throughout the overall learning procedure. The experiments show that the use of RIFLE significantly improves deep transfer learning accuracy on a wide range of datasets, outperforming known tricks for the similar purpose, such as dropout, dropconnect, stochastic depth, and cyclic learning rate, under the same settings with 0.5%-2% higher testing accuracy. Empirical cases and ablation studies further indicate RIFLE brings meaningful updates to deep CNN layers with accuracy improved.

Representations for Stable Off-Policy Reinforcement Learning
Dibya Ghosh, Marc Bellemare

Reinforcement learning with function approximation can be unstable and even divergent, especially when combined with off-policy learning and Bellman updates. In deep reinforcement learning, these issues have been dealt with empirically by adapting and regularizing the representation, in particular with auxiliary tasks. This suggests that representation learning may provide a means to guarantee stability. In this paper, we formally show that there are indeed nontrivial state representations under which the canonical SARSA algorithm is stable, even when learning off-policy. We analyze representation learning schemes that are based on the transition matrix of a policy, such as proto-value functions, along three axes: approximation error, stability, and ease of estimation. In the most general case of a defective transition matrix, we show that a Schur basis provides convergence guarantees, but is difficult to estimate from samples. For a fixed reward function, we find that an orthogonal basis of the corresponding Krylov subspace is an even better choice. We conclude by empirically demonstrating that these stable representations can be learned using stochastic gradient descent, opening the door to improved techniques for representation learning with deep networks.

Online Pricing with Offline Data: Phase Transition and Inverse Square Law
Jinzhi Bu, David Simchi-Levi, Yunzong Xu

This paper investigates the impact of pre-existing offline data on online learning, in the context of dynamic pricing. We study a single-product dynamic pricing problem over a selling horizon of T periods. The demand in each period is determined by the price of the product according to a linear demand model with unknown parameters. We assume that the seller already has some pre-existing offline data before the start of the selling horizon. The seller wants to utilize both the pre-existing offline data and the sequential online data to minimize the regret of the online learning process. We characterize the joint effect of the size, location and dispersion of the offline data on the optimal regret of the online learning process. Our results reveal surprising transformations of the optimal regret rate with respect to the size of the offline data, which we refer to as phase transitions. In addition, our results demonstrate that the location and dispersion of the offline data also have an intrinsic effect on the optimal regret, and we quantify this effect via the inverse-square law.

Scalable Identification of Partially Observed Systems with Certainty-Equivalent EM
Kunal Menda, Jean de Becdelievre, Jayesh Gupta, Ilan Kroo, Mykel Kochenderfer, Zachary Manchester

System identification is a key step for model-based control, estimator design, and output prediction. This work considers the offline identification of partially observed nonlinear systems. We empirically show that the certainty-equivalent approximation to expectation-maximization can be a reliable and scalable approach for high-dimensional deterministic systems, which are common in robotics. We formulate certainty-equivalent expectation-maximization as block coordinate-ascent, and provide an efficient implementation. The algorithm is tested on a simulated system of coupled Lorenz attractors, demonstrating its ability to identify high-dimensional systems that can be intractable for particle-based approaches. Our approach is also used to identify the dynamics of an aerobatic helicopter. By augmenting the state with unobserved fluid states, a model is learned that predicts the acceleration of the helicopter better than state-of-the-art approaches. The codebase for this work is available at https://github.com/sisl/CEEM.

PoWER-BERT: Accelerating BERT Inference via Progressive Word-vector Elimination
Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sabharwal, Ashish Verma

We develop a novel method, called PoWER-BERT, for improving the inference time of the popular BERT model, while maintaining the accuracy. It works by: a) exploiting redundancy pertaining to word-vectors (intermediate encoder outputs) and eliminating the redundant vectors. b) determining which word-vectors to eliminate by developing a strategy for measuring their significance, based on the self-attention mechanism. c) learning how many word-vectors to eliminate by augmenting the BERT model and the loss function. Experiments on the standard GLUE benchmark shows that PoWER-BERT achieves up to 4.5x reduction in inference time over BERT with < 1% loss in accuracy. We show that PoWER-BERT offers significantly better trade-off between accuracy and inference time compared to prior methods. We demonstrate that our method attains up to 6.8x reduction in inference time with < 1% loss in accuracy when applied over ALBERT, a highly compressed version of BERT. The code for PoWER-BERT is publicly available at https://github.com/IBM/PoWER-BERT.

Differentially Private Set Union
Sivakanth Gopi, Pankaj Gulhane, Janardhan Kulkarni, Judy Hanwen Shen, Milad Shokouhi, Sergey Yekhanin
We study the basic operation of set union in the global model of differential privacy. In this problem, we are given a universe $U$ of items, possibly of infinite size, and a database $D$ of users. Each user $i$ contributes a subset $W_i \subseteq U$ of items. We want an ($\epsilon$,$\delta$)-differentially private Algorithm which outputs a subset $S \subset \cup_i W_i$ such that the size of $S$ is as large as possible. The problem arises in countless real world applications, and is particularly ubiquitous in natural language processing (NLP) applications. For example, discovering words, sentences, $n$-grams etc., from private text data belonging to users is an instance of the set union problem. In this paper we design new algorithms for this problem that significantly outperform the best known algorithms.
Neural Clustering Processes
Ari Pakman, Yueqi Wang, Catalin Mitelut, JinHyung Lee, Department of Statistics Liam Paninski

Probabilistic clustering models (or equivalently, mixture models) are basic building blocks in countless statistical models and involve latent random variables over discrete spaces. For these models, posterior inference methods can be inaccurate and/or very slow. In this work we introduce deep network architectures trained with labeled samples from any generative model of clustered datasets. At test time, the networks generate approximate posterior samples of cluster labels for any new dataset of arbitrary size. We develop two complementary approaches to this task, requiring either O(N) or O(K) network forward passes per dataset, where N is the dataset size and K the number of clusters. Unlike previous approaches, our methods sample the labels of all the data points from a well-defined posterior, and can learn nonparametric Bayesian posteriors since they do not limit the number of mixture components. As a scientific application, we present a novel approach to neural spike sorting for high-density multielectrode arrays.

Meta-learning for Mixed Linear Regression
Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, Sewoong Oh
In modern supervised learning, there are a large number of tasks, but many of them are associated with only a small amount of labelled data. These include data from medical image processing and robotic interaction. Even though each individual task cannot be meaningfully trained in isolation, one seeks to meta-learn across the tasks from past experiences by exploiting some similarities. We study a fundamental question of interest: When can abundant tasks with small data compensate for lack of tasks with big data? We focus on a canonical scenario where each task is drawn from a mixture of $k$ linear regressions, and identify sufficient conditions for such a graceful exchange to hold; there is little loss in sample complexity even when we only have access to small data tasks. To this end, we introduce a novel spectral approach and show that we can efficiently utilize small data tasks with the help of $\tilde\Omega(k^{3/2})$ medium data tasks each with $\tilde\Omega(k^{1/2})$ examples.
Invariant Risk Minimization Games
Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, Amit Dhurandhar

The standard risk minimization paradigm of machine learning is brittle when operating in environments whose test distributions are different from the training distribution due to spurious correlations. Training on data from many environments and finding invariant predictors reduces the effect of spurious features by concentrating models on features that have a causal relationship with the outcome. In this work, we pose such invariant risk minimization as finding the Nash equilibrium of an ensemble game among several environments. By doing so, we develop a simple training algorithm that uses best response dynamics and, in our experiments, yields similar or better empirical accuracy with much lower variance than the challenging bi-level optimization problem of Arjovsky et al. (2019). One key theoretical contribution is showing that the set of Nash equilibria for the proposed game are equivalent to the set of invariant predictors for any finite number of environments, even with nonlinear classifiers and transformations. As a result, our method also retains the generalization guarantees to a large set of environments shown in Arjovsky et al. (2019). The proposed algorithm adds to the collection of successful game-theoretic machine learning algorithms such as generative adversarial networks.

Efficient Identification in Linear Structural Causal Models with Auxiliary Cutsets
Daniel Kumor, Carlos Cinelli, Elias Bareinboim

We develop a a new polynomial-time algorithm for identification of structural coefficients in linear causal models that subsumes previous state-of-the-art methods, unifying several disparate approaches to identification in this setting. Building on these results, we develop a procedure for identifying total causal effects in linear systems.

On the Unreasonable Effectiveness of the Greedy Algorithm: Greedy Adapts to Sharpness
Sebastian Pokutta, Mohit Singh, Alfredo Torrico
It is well known that the standard greedy algorithm guarantees a worst-case approximation factor of $1-1/e$ when maximizing a monotone submodular function under a cardinality constraint. However, empirical studies show that its performance is substantially better in practice. This raises a natural question of explaining this improved performance of the greedy algorithm. In this work, we define sharpness for submodular functions as a candidate explanation for this phenomenon. We show that the greedy algorithm provably performs better as the sharpness of the submodular function increases. This improvement ties in closely with the faster convergence rates of first order methods for sharp functions in convex optimization.
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang, Cengiz Pehlevan

Recent work showed that overparameterized autoencoders can be trained to implement associative memory via iterative maps, when the trained input-output Jacobian of the network has all of its eigenvalue norms strictly below one. Here, we theoretically analyze this phenomenon for sigmoid networks by leveraging recent developments in deep learning theory, especially the correspondence between training neural networks in the infinite-width limit and performing kernel regression with the Neural Tangent Kernel (NTK). We find that overparameterized sigmoid autoencoders can have attractors in the NTK limit for both training with a single example and multiple examples under certain conditions. In particular, for multiple training examples, we find that the norm of the largest Jacobian eigenvalue drops below one with increasing input norm, leading to associative memory.

Distributed Online Optimization over a Heterogeneous Network
Nima Eshraghi, Ben Liang

In distributed online optimization over a computing network with heterogeneous nodes, slow nodes can adversely affect the progress of fast nodes, leading to drastic slowdown of the overall convergence process. To address this issue, we consider a new algorithm termed Distributed Any-Batch Mirror Descent (DABMD), which is based on distributed Mirror Descent but uses a fixed per-round computing time to limit the waiting by fast nodes to receive information updates from slow nodes. DABMD is characterized by varying minibatch sizes across nodes. It is applicable to a broader range of problems compared with existing distributed online optimization methods such as those based on dual averaging, and it accommodates time-varying network topology. We study two versions of DABMD, depending on whether the computing nodes average their primal variables via single or multiple consensus iterations. We show that both versions provide strong theoretical performance guarantee, by deriving upperbounds on their expected dynamic regret, which capture the variability in minibatch sizes. Our experimental results show substantial reduction in cost and acceleration in convergence compared with the known best alternative.

NADS: Neural Architecture Distribution Search for Uncertainty Awareness
Randy Ardywibowo, Shahin Boluki, Xinyu Gong, Zhangyang Wang, Xiaoning Qian

Machine learning (ML) systems often encounter Out-of-Distribution (OoD) errors when dealing with testing data coming from a distribution different from training data. It becomes important for ML systems in critical applications to accurately quantify its predictive uncertainty and screen out these anomalous inputs. However, existing OoD detection approaches are prone to errors and even sometimes assign higher likelihoods to OoD samples. Unlike standard learning tasks, there is currently no well established guiding principle for designing OoD detection architectures that can accurately quantify uncertainty. To address these problems, we first seek to identify guiding principles for designing uncertainty-aware architectures, by proposing Neural Architecture Distribution Search (NADS). NADS searches for a distribution of architectures that perform well on a given task, allowing us to identify common building blocks among all uncertainty-aware architectures. With this formulation, we are able to optimize a stochastic OoD detection objective and construct an ensemble of models to perform OoD detection. We perform multiple OoD detection experiments and observe that our NADS performs favorably, with up to 57% improvement in accuracy compared to state-of-the-art methods among 15 different testing configurations.

Learning Adversarial Markov Decision Processes with Bandit Feedback and Unknown Transition
Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, Tiancheng Yu

We consider the task of learning in episodic finite-horizon Markov decision processes with an unknown transition function, bandit feedback, and adversarial losses. We propose an efficient algorithm that achieves O(√L|X|AT ) regret with high probability, where L is the horizon, |X| the number of states, |A| the number of actions, and T the number of episodes. To our knowledge, our algorithm is the first to ensure O(√T) regret in this challenging setting; in fact, it achieves the same regret as (Rosenberg & Mansour, 2019a) who consider the easier setting with full-information. Our key contributions are two-fold: a tighter confidence set for the transition function; and an optimistic loss estimator that is inversely weighted by an "upper occupancy bound".

Overfitting in adversarially robust deep learning
Leslie Rice, Eric Wong, Zico Kolter

It is common practice in deep learning to use overparameterized networks and train for as long as possible; there are numerous studies that show, both theoretically and empirically, that such practices surprisingly do not unduly harm the generalization performance of the classifier. In this paper, we empirically study this phenomenon in the setting of adversarially trained deep networks, which are trained to minimize the loss under worst-case adversarial perturbations. We find that overfitting to the training set does in fact harm robust performance to a very large degree in adversarially robust training across multiple datasets (SVHN, CIFAR-10, CIFAR-100, and ImageNet) and perturbation models (L-infinity and L-2). Based upon this observed effect, we show that the performance gains of virtually all recent algorithmic improvements upon adversarial training can be matched by simply using early stopping. We also show that effects such as the double descent curve do still occur in adversarially trained models, yet fail to explain the observed overfitting. Finally, we study several classical and modern deep learning remedies for overfitting, including regularization and data augmentation, and find that no approach in isolation improves significantly upon the gains achieved by early stopping. All code for reproducing the experiments as well …

Informative Dropout for Robust Representation Learning: A Shape-bias Perspective
Baifeng Shi, Dinghuai Zhang, Qi Dai, Zhanxing Zhu, Yadong Mu, Jingdong Wang

Convolutional Neural Networks (CNNs) are known to rely more on local texture rather than global shape when making decisions. Recent work also indicates a close relationship between CNN's texture-bias and its robustness against distribution shift, adversarial perturbation, random corruption, etc. In this work, we attempt at improving various kinds of robustness universally by alleviating CNN's texture bias. With inspiration from the human visual system, we propose a light-weight model-agnostic method, namely Informative Dropout (InfoDrop), to improve interpretability and reduce texture bias. Specifically, we discriminate texture from shape based on local self-information in an image, and adopt a Dropout-like algorithm to decorrelate the model output from the local texture. Through extensive experiments, we observe enhanced robustness under various scenarios (domain generalization, few-shot classification, image corruption, and adversarial perturbation). To the best of our knowledge, this work is one of the earliest attempts to improve different kinds of robustness in a unified model, shedding new light on the relationship between shape-bias and robustness, also on new approaches to trustworthy machine learning algorithms. Code is available at https://github.com/bfshi/InfoDrop.

Poster Session 3 Tue 14 Jul 09:00 a.m.  

Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou, Lihong Li, Quanquan Gu
We study the stochastic contextual bandit problem, where the reward is generated from an unknown function with additive noise. No assumption is made about the reward function other than boundedness. We propose a new algorithm, NeuralUCB, which leverages the representation power of deep neural networks and uses a neural network-based random feature mapping to construct an upper confidence bound (UCB) of reward for efficient exploration. We prove that, under standard assumptions, NeuralUCB achieves $\tilde O(\sqrt{T})$ regret, where $T$ is the number of rounds. To the best of our knowledge, it is the first neural network-based contextual bandit algorithm with a near-optimal regret guarantee. We also show the algorithm is empirically competitive against representative baselines in a number of benchmarks.
Streaming Coresets for Symmetric Tensor Factorization
Supratim Shit, Rachit Chhaya, Jayesh Choudhari, Anirban Dasgupta
Factorizing tensors has recently become an important optimization module in a number of machine learning pipelines, especially in latent variable models. We show how to do this efficiently in the streaming setting. Given a set of $n$ vectors, each in $\~R^d$, we present algorithms to select a sublinear number of these vectors as coreset, while guaranteeing that the CP decomposition of the $p$-moment tensor of the coreset approximates the corresponding decomposition of the $p$-moment tensor computed from the full data. We introduce two novel algorithmic techniques: online filtering and kernelization. Using these two, we present four algorithms that achieve different tradeoffs of coreset size, update time and working space, beating or matching various state of the art algorithms. In the case of matrices (2-ordered tensor), our online row sampling algorithm guarantees $(1 \pm \epsilon)$ relative error spectral approximation. We show applications of our algorithms in learning single topic modeling.
Closed Loop Neural-Symbolic Learning via Integrating Neural Perception, Grammar Parsing, and Symbolic Reasoning
Qing Li, Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, Song-Chun Zhu

The goal of neural-symbolic computation is to integrate the connectionist and symbolist paradigms. Prior methods learn the neural-symbolic models using reinforcement learning (RL) approaches, which ignore the error propagation in the symbolic reasoning module and thus converge slowly with sparse rewards. In this paper, we address these issues and close the loop of neural-symbolic learning by (1) introducing the grammar model as a symbolic prior to bridge neural perception and symbolic reasoning, and (2) proposing a novel back-search algorithm which mimics the top-down human-like learning procedure to propagate the error through the symbolic reasoning module efficiently. We further interpret the proposed learning framework as maximum likelihood estimation using Markov chain Monte Carlo sampling and the back-search algorithm as a Metropolis-Hastings sampler. The experiments are conducted on two weakly-supervised neural-symbolic tasks: (1) handwritten formula recognition on the newly introduced HWF dataset; (2) visual question answering on the CLEVR dataset. The results show that our approach significantly outperforms the RL methods in terms of performance, converging speed, and data efficiency. Our code and data are released at https://liqing-ustc.github.io/NGS.

Fast OSCAR and OWL Regression via Safe Screening Rules
Runxue Bao, Bin Gu, Heng Huang
Ordered Weighted $L_{1}$ (OWL) regularized regression is a new regression analysis for high-dimensional sparse learning. Proximal gradient methods are used as standard approaches to solve OWL regression. However, it is still a burning issue to solve OWL regression due to considerable computational cost and memory usage when the feature or sample size is large. In this paper, we propose the first safe screening rule for OWL regression by exploring the order of the primal solution with the unknown order structure via an iterative strategy, which overcomes the difficulties of tackling the non-separable regularizer. It effectively avoids the updates of the parameters whose coefficients must be zero during the learning process. More importantly, the proposed screening rule can be easily applied to standard and stochastic proximal gradient methods. Moreover, we prove that the algorithms with our screening rule are guaranteed to have identical results with the original algorithms. Experimental results on a variety of datasets show that our screening rule leads to a significant computational gain without any loss of accuracy, compared to existing competitive algorithms.
Tightening Exploration in Upper Confidence Reinforcement Learning
Hippolyte Bourel, Odalric-Ambrym Maillard, Mohammad Sadegh Talebi

The upper confidence reinforcement learning (\UCRL) strategy introduced in \citep{jaksch2010near} is a popular method to perform regret minimization in unknown discrete Markov Decision Processes under the average-reward criterion. Despite its nice and generic theoretical regret guarantees, this strategy and its variants have remained until now mostly theoretical as numerical experiments on simple environments exhibit long burn-in phases before the learning takes place. In pursuit of practical efficiency, we present \UCRLnew, following the lines of \UCRL, but with two key modifications: First, it uses state-of-the-art time-uniform concentration inequalities, to compute confidence sets on the reward and (component-wise) transition distributions for each state-action pair. Further, to tighten exploration, it uses an adaptive computation of the support of each transition distributions, which in turn enables us to revisit the extended value iteration procedure to optimize over distributions with reduced support by disregarding low probability transitions, while still ensuring near-optimism. We demonstrate, through numerical experiments on standard environments, that reducing exploration this way yields a substantial numerical improvement compared to \UCRL\ and its variants. On the theoretical side, these key modifications enable us to derive a regret bound for \UCRLnew\ improving on \UCRL, that for the first time makes appear notions of local diameter …

BoXHED: Boosted eXact Hazard Estimator with Dynamic covariates
Xiaochen Wang, Arash Pakbin, Bobak Mortazavi, Hongyu Zhao, Donald Lee

The proliferation of medical monitoring devices makes it possible to track health vitals at high frequency, enabling the development of dynamic health risk scores that change with the underlying readings. Survival analysis, in particular hazard estimation, is well-suited to analyzing this stream of data to predict disease onset as a function of the time-varying vitals. This paper introduces the software package BoXHED (pronounced `box-head') for nonparametrically estimating hazard functions via gradient boosting. BoXHED 1.0 is a novel tree-based implementation of the generic estimator proposed in Lee et al. (2017), which was designed for handling time-dependent covariates in a fully nonparametric manner. BoXHED is also the first publicly available software implementation for Lee et al. (2017). Applying BoXHED to cardiovascular disease onset data from the Framingham Heart Study reveals novel interaction effects among known risk factors, potentially resolving an open question in clinical literature.

Low-loss connection of weight vectors: distribution-based approaches
Ivan Anokhin, Dmitry Yarotsky

Recent research shows that sublevel sets of the loss surfaces of overparameterized networks are connected, exactly or approximately. We describe and compare experimentally a panel of methods used to connect two low-loss points by a low-loss curve on this surface. Our methods vary in accuracy and complexity. Most of our methods are based on ''macroscopic'' distributional assumptions and are insensitive to the detailed properties of the points to be connected. Some methods require a prior training of a ''global connection model'' which can then be applied to any pair of points. The accuracy of the method generally correlates with its complexity and sensitivity to the endpoint detail.

Rank Aggregation from Pairwise Comparisons in the Presence of Adversarial Corruptions
Arpit Agarwal, Shivani Agarwal, Sanjeev Khanna, Prathamesh Patil

Rank aggregation from pairwise preferences has widespread applications in recommendation systems and information retrieval. Given the enormous economic and societal impact of these applications, and the consequent incentives for malicious players to manipulate ranking outcomes in their favor, an important challenge is to make rank aggregation algorithms robust to adversarial manipulations in data. In this paper, we initiate the study of robustness in rank aggregation under the popular Bradley-Terry-Luce (BTL) model for pairwise comparisons. We consider a setting where pairwise comparisons are initially generated according to a BTL model, but a fraction of these comparisons are corrupted by an adversary prior to being reported to us. We consider a strong contamination model, where an adversary having complete knowledge of the initial truthful data and the underlying true BTL parameters, can subsequently corrupt the truthful data by inserting, deleting, or changing data points. The goal is to estimate the true score/weight of each item under the BTL model, even in the presence of these corruptions. We characterize the extent of adversarial corruption under which the true BTL parameters are uniquely identifiable. We also provide a novel pruning algorithm that provably cleans the data of adversarial corruption under reasonable conditions on data …

Structured Policy Iteration for Linear Quadratic Regulator
Youngsuk Park, Ryan A. Rossi, Zheng Wen, Gang Wu, Handong Zhao

Linear quadratic regulator (LQR) is one of the most popular frameworks to tackle continuous Markov decision process tasks. With its fundamental theory and tractable optimal policy, LQR has been revisited and analyzed in recent years, in terms of reinforcement learning scenarios such as the model-free or model-based setting. In this paper, we introduce the Structured Policy Iteration (S-PI) for LQR, a method capable of deriving a structured linear policy. Such a structured policy with (block) sparsity or low-rank can have significant advantages over the standard LQR policy: more interpretable, memory-efficient, and well-suited for the distributed setting. In order to derive such a policy, we first cast a regularized LQR problem when the model is known. Then, our Structured Policy Iteration (S-PI) algorithm, which takes a policy evaluation step and a policy improvement step in an iterative manner, can solve this regularized LQR efficiently. We further extend the S-PI algorithm to the model-free setting where a smoothing procedure is adopted to estimate the gradient. In both the known-model and model-free setting, we prove convergence analysis under the proper choice of parameters. Finally, the experiments demonstrate the advantages of S-PI in terms of balancing the LQR performance and level of structure by …

Recovery of Sparse Signals from a Mixture of Linear Samples
Soumyabrata Pal, Arya Mazumdar

Mixture of linear regressions is a popular learning theoretic model that is used widely to represent heterogeneous data. In the simplest form, this model assumes that the labels are generated from either of two different linear models and mixed together. Recent works of Yin et al. and Krishnamurthy et al., 2019, focus on an experimental design setting of model recovery for this problem. It is assumed that the features can be designed and queried with to obtain their label. When queried, an oracle randomly selects one of the two different sparse linear models and generates a label accordingly. How many such oracle queries are needed to recover both of the models simultaneously? This question can also be thought of as a generalization of the well-known compressed sensing problem (Cand`es and Tao, 2005, Donoho, 2006). In this work we address this query complexity problem and provide efficient algorithms that improves on the previously best known results.

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics
Mahsa Ghasemi, Erdem Bulgur, Ufuk Topcu

We consider an agent that is assigned with a temporal logic task in an environment whose semantic representation is only partially known. We represent the semantics of the environment with a set of state properties, called \textit{atomic propositions} over which, the agent holds a probabilistic belief and updates it as new sensory measurements arrive. The goal is to design a policy for the agent that realizes the task with high probability. We develop a planning strategy that takes the semantic uncertainties into account and by doing so provides probabilistic guarantees on the task success. Furthermore, as new data arrive, the belief over the atomic propositions evolves and, subsequently, the planning strategy adapts accordingly. We evaluate the proposed method on various finite-horizon tasks in planar navigation settings where the empirical results show that the proposed method provides reliable task performance that also improves as the knowledge about the environment enhances.

Scalable Deep Generative Modeling for Sparse Graphs
Hanjun Dai, Azade Nazi, Yujia Li, Bo Dai, Dale Schuurmans

Learning graph generative models is a challenging task for deep learning and has wide applicability to a range of domains like chemistry, biology and social science. However current deep neural methods suffer from limited scalability: for a graph with n nodes and m edges, existing deep neural methods require Omega(n^2) complexity by building up the adjacency matrix. On the other hand, many real world graphs are actually sparse in the sense that m << n^2. Based on this, we develop a novel autoregressive model, named BiGG, that utilizes this sparsity to avoid generating the full adjacency matrix, and importantly reduces the graph generation time complexity to O((n + m) log n). Furthermore, during training this autoregressive model can be parallelized with O(log n) synchronization stages, which makes it much more efficient than other autoregressive models that require Omega(n). Experiments on several benchmarks show that the proposed approach not only scales to orders of magnitude larger graphs than previously possible with deep autoregressive graph generative models, but also yields better graph generation quality.

Learning Algebraic Multigrid Using Graph Neural Networks
Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, Irad Yavneh

Efficient numerical solvers for sparse linear systems are crucial in science and engineering. One of the fastest methods for solving large-scale sparse linear systems is algebraic multigrid (AMG). The main challenge in the construction of AMG algorithms is the selection of the prolongation operator---a problem-dependent sparse matrix which governs the multiscale hierarchy of the solver and is critical to its efficiency. Over many years, numerous methods have been developed for this task, and yet there is no known single right answer except in very special cases. Here we propose a framework for learning AMG prolongation operators for linear systems with sparse symmetric positive (semi-) definite matrices. We train a single graph neural network to learn a mapping from an entire class of such matrices to prolongation operators, using an efficient unsupervised loss function. Experiments on a broad class of problems demonstrate improved convergence rates compared to classical AMG, demonstrating the potential utility of neural networks for developing sparse system solvers.

A Markov Decision Process Model for Socio-Economic Systems Impacted by Climate Change
Salman Sadiq Shuvo, Yasin Yilmaz, Alan Bush, Mark Hafen

Coastal communities are at high risk of natural hazards due to unremitting global warming and sea level rise. Both the catastrophic impacts, e.g., tidal flooding and storm surges, and the long-term impacts, e.g., beach erosion, inundation of low lying areas, and saltwater intrusion into aquifers, cause economic, social, and ecological losses. Creating policies through appropriate modeling of the responses of stakeholders€™, such as government, businesses, and residents, to climate change and sea level rise scenarios can help to reduce these losses. In this work, we propose a Markov decision process (MDP) formulation for an agent (government) which interacts with the environment (nature and residents) to deal with the impacts of climate change, in particular sea level rise. Through theoretical analysis we show that a reasonable government's policy on infrastructure development ought to be proactive and based on detected sea levels in order to minimize the expected total cost, as opposed to a straightforward government that reacts to observed costs from nature. We also provide a deep reinforcement learning-based scenario planning tool considering different government and resident types in terms of cooperation, and different sea level rise projections by the National Oceanic and Atmospheric Administration (NOAA).

Disentangling Trainability and Generalization in Deep Neural Networks
Lechao Xiao, Jeffrey Pennington, Samuel Schoenholz

A longstanding goal in the theory of deep learning is to characterize the conditions under which a given neural network architecture will be trainable, and if so, how well it might generalize to unseen data. In this work, we provide such a characterization in the limit of very wide and very deep networks, for which the analysis simplifies considerably. For wide networks, the trajectory under gradient descent is governed by the Neural Tangent Kernel (NTK), and for deep networks the NTK itself maintains only weak data dependence. By analyzing the spectrum of the NTK, we formulate necessary conditions for trainability and generalization across a range of architectures, including Fully Connected Networks (FCNs) and Convolutional Neural Networks (CNNs). We identify large regions of hyperparameter space for which networks can memorize the training set but completely fail to generalize. We find that CNNs without global average pooling behave almost identically to FCNs, but that CNNs with pooling have markedly different and often better generalization performance. These theoretical results are corroborated experimentally on CIFAR10 for a variety of network architectures.

We include a \href{https://colab.research.google.com/github/google/neural-tangents/blob/master/notebooks/disentanglingtrainabilityand_generalization.ipynb}{colab} notebook that reproduces the essential results of the paper.

Enhanced POET: Open-ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions
Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, Ken Stanley

Creating open-ended algorithms, which generate their own never-ending stream of novel and appropriately challenging learning opportunities, could help to automate and accelerate progress in machine learning. A recent step in this direction is the Paired Open-Ended Trailblazer (POET), an algorithm that generates and solves its own challenges, and allows solutions to goal-switch between challenges to avoid local optima. However, the original POET was unable to demonstrate its full creative potential because of limitations of the algorithm itself and because of external issues including a limited problem space and lack of a universal progress measure. Importantly, both limitations pose impediments not only for POET, but for the pursuit of open-endedness in general. Here we introduce and empirically validate two new innovations to the original algorithm, as well as two external innovations designed to help elucidate its full potential. Together, these four advances enable the most open-ended algorithmic demonstration to date. The algorithmic innovations are (1) a domain-general measure of how meaningfully novel new challenges are, enabling the system to potentially create and solve interesting challenges endlessly, and (2) an efficient heuristic for determining when agents should goal-switch from one problem to another (helping open-ended search better scale). Outside the algorithm itself, …

Dispersed Exponential Family Mixture VAEs for Interpretable Text Generation
Wenxian Shi, Hao Zhou, Ning Miao, Lei Li

Interpretability is important in text generation for guiding the generation with interpretable attributes. Variational auto-encoder (VAE) with Gaussian distribution as prior has been successfully applied in text generation, but it is hard to interpret the meaning of the latent variable. To enhance the controllability and interpretability, one can replace the Gaussian prior with a mixture of Gaussian distributions (GM-VAE), whose mixture components could be related to some latent attributes of data. Unfortunately, straightforward variational training of GM-VAE leads the mode-collapse problem. In this paper, we find that mode-collapse is a general problem for VAEs with exponential family mixture priors. We propose DEM-VAE, which introduces an extra dispersion term to induce a well-structured latent space. Experimental results show that our approach does obtain a well structured latent space, with which our method outperforms strong baselines in interpretable text generation benchmarks.

Being Bayesian about Categorical Probability
Taejong Joo, Uijung Chung, Min-Gwan Seo

Neural networks utilize the softmax as a building block in classification tasks, which contains an overconfidence problem and lacks an uncertainty representation ability. As a Bayesian alternative to the softmax, we consider a random variable of a categorical probability over class labels. In this framework, the prior distribution explicitly models the presumed noise inherent in the observed label, which provides consistent gains in generalization performance in multiple challenging tasks. The proposed method inherits advantages of Bayesian approaches that achieve better uncertainty estimation and model calibration. Our method can be implemented as a plug-and-play loss function with negligible computational overhead compared to the softmax with the cross-entropy loss function.

The Many Shapley Values for Model Explanation
Mukund Sundararajan, Amir Najmi

The Shapley value has become the basis for several methods that attribute the prediction of a machine-learning model on an input to its base features. The use of the Shapley value is justified by citing the uniqueness result from~\cite{Shapley53}, which shows that it is the only method that satisfies certain good properties (\emph{axioms}). There are, however, a multiplicity of ways in which the Shapley value is operationalized for model explanation. These differ in how they reference the model, the training data, and the explanation context. Hence they differ in output, rendering the uniqueness result inapplicable. Furthermore, the techniques that rely on they training data produce non-intuitive attributions, for instance unused features can still receive attribution.

In this paper, we use the axiomatic approach to study the differences between some of the many operationalizations of the Shapley value for attribution. We discuss a technique called Baseline Shapley (BShap), provide a proper uniqueness result for it, and contrast it with two other techniques from prior literature, Integrated Gradients~\cite{STY17} and Conditional Expectation Shapley~\cite{Lundberg2017AUA}.

Variable Skipping for Autoregressive Range Density Estimation
Eric Liang, Zongheng Yang, Ion Stoica, Pieter Abbeel, Yan Duan, Peter Chen

Deep autoregressive models compute point likelihood estimates of individual data points. However, many applications (i.e., database cardinality estimation), require estimating range densities, a capability that is under-explored by current neural density estimation literature. In these applications, fast and accurate range density estimates over high-dimensional data directly impact user-perceived performance. In this paper, we explore a technique for accelerating range density estimation over deep autoregressive models. This technique, called variable skipping, exploits the sparse structure of range density queries to avoid sampling unnecessary variables during approximate inference. We show that variable skipping provides 10-100x efficiency improvements when targeting challenging high-quantile error metrics, enables complex applications such as text pattern matching, and can be realized via a simple data augmentation procedure without changing the usual maximum likelihood objective.

Learning Compound Tasks without Task-specific Knowledge via Imitation and Self-supervised Learning
Sang-Hyun Lee, Seung-Woo Seo

Most real-world tasks are compound tasks that consist of multiple simpler sub-tasks. The main challenge of learning compound tasks is that we have no explicit supervision to learn the hierarchical structure of compound tasks. To address this challenge, previous imitation learning methods exploit task-specific knowledge, e.g., labeling demonstrations manually or specifying termination conditions for each sub-task. However, the need for task-specific knowledge makes it difficult to scale imitation learning to real-world tasks. In this paper, we propose an imitation learning method that can learn compound tasks without task-specific knowledge. The key idea behind our method is to leverage a self-supervised learning framework to learn the hierarchical structure of compound tasks. Our work also proposes a task-agnostic regularization technique to prevent unstable switching between sub-tasks, which has been a common degenerate case in previous works. We evaluate our method against several baselines on compound tasks. The results show that our method achieves state-of-the-art performance on compound tasks, outperforming prior imitation learning methods.

On Semi-parametric Inference for BART
Veronika Rockova

There has been a growing realization of the potential of Bayesian machine learning as a platform that can provide both flexible modeling, accurate predictions as well as coherent uncertainty statements. In particular, Bayesian Additive Regression Trees (BART) have emerged as one of today’s most effective general approaches to predictive modeling under minimal assumptions. Statistical theoretical developments for machine learning have been mostly concerned with approximability or rates of estimation when recovering infinite dimensional objects (curves or densities). Despite the impressive array of available theoretical results, the literature has been largely silent about uncertainty quantification. In this work, we continue the theoretical investigation of BART initiated recently by Rockova and van der Pas (2017). We focus on statistical inference questions. In particular, we study the Bernstein-von Mises (BvM) phenomenon (i.e. asymptotic normality) for smooth linear functionals of the regression surface within the framework of non-parametric regression with fixed covariates. Our semi-parametric BvM results show that, beyond rate-optimal estimation, BART can be also used for valid statistical inference.

Two Simple Ways to Learn Individual Fairness Metrics from Data
Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee, Yuekai Sun

Individual fairness is an intuitive definition of algorithmic fairness that addresses some of the drawbacks of group fairness. Despite its benefits, it depends on a task specific fair metric that encodes our intuition of what is fair and unfair for the ML task at hand, and the lack of a widely accepted fair metric for many ML tasks is the main barrier to broader adoption of individual fairness. In this paper, we present two simple ways to learn fair metrics from a variety of data types. We show empirically that fair training with the learned metrics leads to improved fairness on three machine learning tasks susceptible to gender and racial biases. We also provide theoretical guarantees on the statistical performance of both approaches.

Multiresolution Tensor Learning for Efficient and Interpretable Spatial Analysis
John Park, Kenneth Carr, Stephan Zheng, Yisong Yue, Rose Yu

Efficient and interpretable spatial analysis is crucial in many fields such as geology, sports, and climate science. Tensor latent factor models can describe higher-order correlations for spatial data. However, they are computationally expensive to train and are sensitive to initialization, leading to spatially incoherent, uninterpretable results. We develop a novel Multiresolution Tensor Learning (MRTL) algorithm for efficiently learning interpretable spatial patterns. MRTL initializes the latent factors from an approximate full-rank tensor model for improved interpretability and progressively learns from a coarse resolution to the fine resolution for boosted efficiency. We also prove the theoretical convergence and computational complexity of MRTL. When applied to two real-world datasets, MRTL demonstrates 4~5x speedup compared to a fixed resolution approach while yielding accurate and interpretable models.

Source Separation with Deep Generative Priors
Vivek Jayaram, John Thickstun

Despite substantial progress in signal source separation, results for richly structured data continue to contain perceptible artifacts. In contrast, recent deep generative models can produce authentic samples in a variety of domains that are indistinguishable from samples of the data distribution. This paper introduces a Bayesian approach to source separation that uses deep generative models as priors over the components of a mixture of sources, and noise-annealed Langevin dynamics to sample from the posterior distribution of sources given a mixture. This decouples the source separation problem from generative modeling, enabling us to directly use cutting-edge generative models as priors. The method achieves state-of-the-art performance for MNIST digit separation. We introduce new methodology for evaluating separation quality on richer datasets, providing quantitative evaluation and qualitative discussion of results for CIFAR-10 image separation.

Designing Optimal Dynamic Treatment Regimes: A Causal Reinforcement Learning Approach
Junzhe Zhang

A dynamic treatment regime (DTR) consists of a sequence of decision rules, one per stage of intervention, that dictates how to determine the treatment assignment to patients based on evolving treatments and covariates' history. These regimes are particularly effective for managing chronic disorders and is arguably one of the critical ingredients underlying more personalized decision-making systems. All reinforcement learning algorithms for finding the optimal DTR in online settings will suffer O(\sqrt{|D{X, S}|T}) regret on some environments, where T is the number of experiments, and D{X, S} is the domains of treatments X and covariates S. This implies T = O (|D{X, S}|) trials to generate an optimal DTR. In many applications, domains of X and S could be so enormous that the time required to ensure appropriate learning may be unattainable. We show that, if the causal diagram of the underlying environment is provided, one could achieve regret that is exponentially smaller than D{X, S}. In particular, we develop two online algorithms that satisfy such regret bounds by exploiting the causal structure underlying the DTR; one is based on the principle of optimism in the face of uncertainty (OFU-DTR), and the other uses the posterior sampling …

How Good is the Bayes Posterior in Deep Neural Networks Really?
Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, Sebastian Nowozin

During the past five years the Bayesian deep learning community has developed increasingly accurate and efficient approximate inference procedures that allow for Bayesian inference in deep neural networks. However, despite this algorithmic progress and the promise of improved uncertainty quantification and sample efficiency there are---as of early 2020---no publicized deployments of Bayesian neural networks in industrial practice. In this work we cast doubt on the current understanding of Bayes posteriors in popular deep neural networks: we demonstrate through careful MCMC sampling that the posterior predictive induced by the Bayes posterior yields systematically worse predictions when compared to simpler methods including point estimates obtained from SGD. Furthermore, we demonstrate that predictive performance is improved significantly through the use of a ``cold posterior'' that overcounts evidence. Such cold posteriors sharply deviate from the Bayesian paradigm but are commonly used as heuristic in Bayesian deep learning papers. We put forward several hypotheses that could explain cold posteriors and evaluate the hypotheses through experiments. Our work questions the goal of accurate posterior approximations in Bayesian deep learning: If the true Bayes posterior is poor, what is the use of more accurate approximations? Instead, we argue that it is timely to focus on understanding the …

Context Aware Local Differential Privacy
Jayadev Acharya, Kallista Bonawitz, Peter Kairouz, Daniel Ramage, Ziteng Sun

Local differential privacy (LDP) is a strong notion of privacy that often leads to a significant drop in utility. The original definition of LDP assumes that all the elements in the data domain are equally sensitive. However, in many real-life applications, some elements are more sensitive than others. We propose a context-aware framework for LDP that allows the privacy level to vary across the data domain, enabling system designers to place privacy constraints where they matter without paying the cost where they do not. For binary data domains, we provide a universally optimal privatization scheme and highlight its connections to Warner’s randomized response and Mangat’s improved response. Motivated by geo-location and web search applications, for k-ary data domains, we consider two special cases of context-aware LDP: block-structured LDP and high-low LDP. We study minimax discrete distribution estimation under both cases and provide communication-efficient, sample-optimal schemes, and information-theoretic lower bounds. We show, using worst-case analyses and experiments on Gowalla’s 3.6 million check-ins to 43,750 locations, that context-aware LDP achieves a far better accuracy under the same number of samples.

Stabilizing Differentiable Architecture Search via Perturbation-based Regularization
Xiangning Chen, Cho-Jui Hsieh

Differentiable architecture search (DARTS) is a prevailing NAS solution to identify architectures. Based on the continuous relaxation of the architecture space, DARTS learns a differentiable architecture weight and largely reduces the search cost. However, its stability has been challenged for yielding deteriorating architectures as the search proceeds. We find that the precipitous validation loss landscape, which leads to a dramatic performance drop when distilling the final architecture, is an essential factor that causes instability. Based on this observation, we propose a perturbation-based regularization - SmoothDARTS (SDARTS), to smooth the loss landscape and improve the generalizability of DARTS-based methods. In particular, our new formulations stabilize DARTS-based methods by either random smoothing or adversarial attack. The search trajectory on NAS-Bench-1Shot1 demonstrates the effectiveness of our approach and due to the improved stability, we achieve performance gain across various search spaces on 4 datasets. Furthermore, we mathematically show that SDARTS implicitly regularizes the Hessian norm of the validation loss, which accounts for a smoother loss landscape and improved performance.

An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa, aditi raghunathan, Pang Wei Koh, Percy Liang

We study why overparameterization---increasing model size well beyond the point of zero training error---can hurt test error on minority groups despite improving average test error when there are spurious correlations in the data. Through simulations and experiments on two image datasets, we identify two key properties of the training data that drive this behavior: the proportions of majority versus minority groups, and the signal-to-noise ratio of the spurious correlations. We then analyze a linear setting and theoretically show how the inductive bias of models towards ``memorizing'' fewer examples can cause overparameterization to hurt. Our analysis leads to a counterintuitive approach of subsampling the majority group, which empirically achieves low minority error in the overparameterized regime, even though the standard approach of upweighting the minority fails. Overall, our results suggest a tension between using overparameterized models versus using all the training data for achieving low worst-group error.

Description Based Text Classification with Reinforcement Learning
Duo Chai, Wei Wu, Qinghong Han, Fei Wu, Jiwei Li

The task of text classification is usually divided into two stages: text feature extraction and classification. In this standard formalization, categories are merely represented as indexes in the label vocabulary, and the model lacks for explicit instructions on what to classify. Inspired by the current trend of formalizing NLP problems as question answering tasks, we propose a new framework for text classification, in which each category label is associated with a category description. Descriptions are generated by hand-crafted templates or using abstractive/extractive models from reinforcement learning. The concatenation of the description and the text is fed to the classifier to decide whether or not the current label should be assigned to the text. The proposed strategy forces the model to attend to the most salient texts with respect to the label, which can be regarded as a hard version of attention, leading to better performances. We observe significant performance boosts over strong baselines on a wide range of text classification tasks including single-label classification, multi-label classification and multi-aspect sentiment analysis.

Robustness to Spurious Correlations via Human Annotations
Megha Srivastava, Tatsunori Hashimoto, Percy Liang

The reliability of machine learning systems critically assumes that the associations between features and labels remain similar between training and test distributions. However, unmeasured variables, such as confounders, break this assumption---useful correlations between features and labels at training time can become useless or even harmful at test time. For example, high obesity is generally predictive for heart disease, but this relation may not hold for smokers who generally have lower rates of obesity and higher rates of heart disease. We present a framework for making models robust to spurious correlations by leveraging humans' common sense knowledge of causality. Specifically, we use human annotation to augment each training example with a potential unmeasured variable (i.e. an underweight patient with heart disease may be a smoker), reducing the problem to a covariate shift problem. We then introduce a new distributionally robust optimization objective over unmeasured variables (UV-DRO) to control the worst-case loss over possible test- time shifts. Empirically, we show improvements of 5--10% on a digit recognition task confounded by rotation, and 1.5--5% on the task of analyzing NYPD Police Stops confounded by location.

Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, Martin Vechev

We develop an effective generation of adversarial attacks on neural models that output a sequence of probability distributions rather than a sequence of single values. This setting includes the recently proposed deep probabilistic autoregressive forecasting models that estimate the probability distribution of a time series given its past and achieve state-of-the-art results in a diverse set of application domains. The key technical challenge we address is how to effectively differentiate through the Monte-Carlo estimation of statistics of the output sequence joint distribution. Additionally, we extend prior work on probabilistic forecasting to the Bayesian setting which allows conditioning on future observations, instead of only on past observations. We demonstrate that our approach can successfully generate attacks with small input perturbations in two challenging tasks where robust decision making is crucial -- stock market trading and prediction of electricity consumption.

Nearly Linear Row Sampling Algorithm for Quantile Regression
Yi Li, Ruosong Wang, Lin Yang, Hanrui Zhang
We give a row sampling algorithm for the quantile loss function with sample complexity nearly linear in the dimensionality of the data, improving upon the previous best algorithm whose sampling complexity has at least cubic dependence on the dimensionality. Based upon our row sampling algorithm, we give the fastest known algorithm for quantile regression and a graph sparsification algorithm for balanced directed graphs. Our main technical contribution is to show that Lewis weights sampling, which has been used in row sampling algorithms for $\ell_p$ norms, can also be applied in row sampling algorithms for a variety of loss functions. We complement our theoretical results by experiments to demonstrate the practicality of our approach.
Provable guarantees for decision tree induction: the agnostic setting
Guy Blanc, Jane Lange, Li-Yang Tan
We give strengthened provable guarantees on the performance of widely employed and empirically successful {\sl top-down decision tree learning heuristics}. While prior works have focused on the realizable setting, we consider the more realistic and challenging {\sl agnostic} setting. We show that for all monotone functions~$f$ and $s\in \mathbb{N}$, these heuristics construct a decision tree of size $s^{\tilde{O}((\log s)/\varepsilon^2)}$ that achieves error $\le \mathsf{opt}_s + \varepsilon$, where $\mathsf{opt}_s$ denotes the error of the optimal size-$s$ decision tree for $f$. Previously such a guarantee was not known to be achievable by any algorithm, even one that is not based on top-down heuristics. We complement our algorithmic guarantee with a near-matching $s^{\tilde{\Omega}(\log s)}$ lower bound.
Lookahead-Bounded Q-learning
Ibrahim El Shar, Daniel Jiang

We introduce the lookahead-bounded Q-learning (LBQL) algorithm, a new, provably convergent variant of Q-learning that seeks to improve the performance of standard Q-learning in stochastic environments through the use of “lookahead” upper and lower bounds. To do this, LBQL employs previously collected experience and each iteration’s state-action values as dual feasible penalties to construct a sequence of sampled information relaxation problems. The solutions to these problems provide estimated upper and lower bounds on the optimal value, which we track via stochastic approximation. These quantities are then used to constrain the iterates to stay within the bounds at every iteration. Numerical experiments on benchmark problems show that LBQL exhibits faster convergence and more robustness to hyperparameters when compared to standard Q-learning and several related techniques. Our approach is particularly appealing in problems that require expensive simulations or real-world interactions.

Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization
Sicheng Zhu, Xiao Zhang, David Evans

Training machine learning models that are robust against adversarial inputs poses seemingly insurmountable challenges. To better understand adversarial robustness, we consider the underlying problem of learning robust representations. We develop a notion of representation vulnerability that captures the maximum change of mutual information between the input and output distributions, under the worst-case input perturbation. Then, we prove a theorem that establishes a lower bound on the minimum adversarial risk that can be achieved for any downstream classifier based on its representation vulnerability. We propose an unsupervised learning method for obtaining intrinsically robust representations by maximizing the worst-case mutual information between the input and output distributions. Experiments on downstream classification tasks %and analyses of saliency maps support the robustness of the representations found using unsupervised learning with our training principle.

CAUSE: Learning Granger Causality from Event Sequences using Attribution Methods
Wei Zhang, Thomas Panum, Somesh Jha, PRASAD Chalasani, David Page

We study the problem of learning Granger causality between event types from asynchronous, interdependent, multi-type event sequences. Existing work suffers from either limited model flexibility or poor model explainability and thus fails to uncover Granger causality across a wide variety of event sequences with diverse event interdependency. To address these weaknesses, we propose CAUSE (Causality from AttribUtions on Sequence of Events), a novel framework for the studied task. The key idea of CAUSE is to first implicitly capture the underlying event interdependency by fitting a neural point process, and then extract from the process a Granger causality statistic using an axiomatic attribution method. Across multiple datasets riddled with diverse event interdependency, we demonstrate that CAUSE achieves superior performance on correctly inferring the inter-type Granger causality over a range of state-of-the-art methods.

Generalization Guarantees for Sparse Kernel Approximation with Entropic Optimal Features
Liang Ding, Rui Tuo, Shahin Shahrampour
Despite their success, kernel methods suffer from a massive computational cost in practice. In this paper, in lieu of commonly used kernel expansion with respect to $N$ inputs, we develop a novel optimal design maximizing the entropy among kernel features. This procedure results in a kernel expansion with respect to entropic optimal features (EOF), improving the data representation dramatically due to features dissimilarity. Under mild technical assumptions, our generalization bound shows that with only $O(N^{\frac{1}{4}})$ features (disregarding logarithmic factors), we can achieve the optimal statistical accuracy (i.e., $O(1/\sqrt{N})$). The salient feature of our design is its sparsity that significantly reduces the time and space costs. Our numerical experiments on benchmark datasets verify the superiority of EOF over the state-of-the-art in kernel approximation.
Variance Reduction in Stochastic Particle-Optimization Sampling
Jianyi Zhang, Yang Zhao, Changyou Chen
Stochastic particle-optimization sampling (SPOS) is a recently-developed scalable Bayesian sampling framework unifying stochastic gradient MCMC (SG-MCMC) and Stein variational gradient descent (SVGD) algorithms based on Wasserstein gradient flows. With a rigorous non-asymptotic convergence theory developed, SPOS can avoid the particle-collapsing pitfall of SVGD. However, the variance-reduction effect in SPOS has not been clear. In this paper, we address this gap by presenting several variance-reduction techniques for SPOS. Specifically, we propose three variants of variance-reduced SPOS, called SAGA particle-optimization sampling (SAGA-POS), SVRG particle-optimization sampling (SVRG-POS) and a variant of SVRG-POS which avoids full gradient computations, denoted as SVRG-POS$^+$. Importantly, we provide non-asymptotic convergence guarantees for these algorithms in terms of the 2-Wasserstein metric and analyze their complexities. The results show our algorithms yield better convergence rates than existing variance-reduced variants of stochastic Langevin dynamics, though more space is required to store the particles in training. Our theory aligns well with experimental results on both synthetic and real datasets.
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences
Daniel Brown, Russell Coleman, Ravi Srinivasan, Scott Niekum

Bayesian reward learning from demonstrations enables rigorous safety and uncertainty analysis when performing imitation learning. However, Bayesian reward learning methods are typically computationally intractable for complex control problems. We propose Bayesian Reward Extrapolation (Bayesian REX), a highly efficient Bayesian reward learning algorithm that scales to high-dimensional imitation learning problems by pre-training a low-dimensional feature encoding via self-supervised tasks and then leveraging preferences over demonstrations to perform fast Bayesian inference. Bayesian REX can learn to play Atari games from demonstrations, without access to the game score and can generate 100,000 samples from the posterior over reward functions in only 5 minutes on a personal laptop. Bayesian REX also results in imitation learning performance that is competitive with or better than state-of-the-art methods that only learn point estimates of the reward function. Finally, Bayesian REX enables efficient high-confidence policy evaluation without having access to samples of the reward function. These high-confidence performance bounds can be used to rank the performance and risk of a variety of evaluation policies and provide a way to detect reward hacking behaviors.

Deep k-NN for Noisy Labels
Dara Bahri, Heinrich Jiang, Maya Gupta
Modern machine learning models are often trained on examples with noisy labels that hurt performance and are hard to identify. In this paper, we provide an empirical study showing that a simple $k$-nearest neighbor-based filtering approach on the logit layer of a preliminary model can remove mislabeled training data and produce more accurate models than many recently proposed methods. We also provide new statistical guarantees into its efficacy.
Retrieval Augmented Language Model Pre-Training
Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, Mingwei Chang

Language model pre-training has been shown to capture a surprising amount of world knowledge, crucial for NLP tasks such as question answering. However, this knowledge is stored implicitly in the parameters of a neural network, requiring ever-larger networks to cover more facts. To capture knowledge in a more modular and interpretable way, we augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia, used during pre-training, fine-tuning and inference. For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner, using masked language modeling as the learning signal and backpropagating through a retrieval step that considers millions of documents. We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA). We compare against state-of-the-art models for both explicit and implicit knowledge storage on three popular Open-QA benchmarks, and find that we outperform all previous methods by a significant margin (4-16% absolute accuracy), while also providing qualitative benefits such as interpretability and modularity.

Bayesian Graph Neural Networks with Adaptive Connection Sampling
Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna Narayanan, Xiaoning Qian

We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs) that generalizes existing stochastic regularization methods for training GNNs. The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs. Instead of using fixed sampling rates or hand-tuning themas model hyperparameters in existing stochastic regularization methods, our adaptive connection sampling can be trained jointly with GNN model parameters in both global and local fashions. GNN training with adaptive connection sampling is shown to be mathematically equivalent to an efficient approximation of training BayesianGNNs. Experimental results with ablation studies on benchmark datasets validate that adaptively learning the sampling rate given graph training data is the key to boost the performance of GNNs in semi-supervised node classification, less prone to over-smoothing and over-fitting with more robust prediction.

Non-Autoregressive Neural Text-to-Speech
Kainan Peng, Wei Ping, Zhao Song, Kexin Zhao

In this work, we propose ParaNet, a non-autoregressive seq2seq model that converts text to spectrogram. It is fully convolutional and brings 46.7 times speed-up over the lightweight Deep Voice 3 at synthesis, while obtaining reasonably good speech quality. ParaNet also produces stable alignment between text and speech on the challenging test sentences by iteratively improving the attention in a layer-by-layer manner. Furthermore, we build the parallel text-to-speech system by applying various parallel neural vocoders, which can synthesize speech from text through a single feed-forward pass. We also explore a novel VAE-based approach to train the inverse autoregressive flow~(IAF) based parallel vocoder from scratch, which avoids the need for distillation from a separately trained WaveNet as previous work.

Evolutionary Reinforcement Learning for Sample-Efficient Multiagent Coordination
Somdeb Majumdar, Shauharda Khadka, Santiago Miret, Stephen Mcaleer, Kagan Tumer

Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is often difficult due to its sparsity. Also, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team coordination objective. A common approach is to use reward shaping to construct a proxy reward by combining the individual rewards. However, this requires manual tuning for each environment. We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-level training platform that handles the two objectives separately through two optimization processes. An evolutionary algorithm maximizes the sparse team-based objective through neuroevolution on a population of teams. Concurrently, a gradient-based optimizer trains policies to only maximize the dense agent-specific rewards. The gradient-based policies are periodically added to the evolutionary population as a way of information transfer between the two optimization processes. This enables the evolutionary algorithm to use skills learned via the agent-specific rewards toward optimizing the global objective. Results demonstrate that MERL significantly outperforms state-of-the-art methods, such as MADDPG, on a number of difficult coordination benchmarks.

A Chance-Constrained Generative Framework for Sequence Optimization
Xianggen Liu, Qiang Liu, Sen Song , Jian Peng

Deep generative modeling has achieved many successes for continuous data generation, such as producing realistic images and controlling their properties (e.g., styles). However, the development of generative modeling techniques for optimizing discrete data, such as sequences or strings, still lags behind largely due to the challenges in modeling complex and long-range constraints, including both syntax and semantics, in discrete structures. In this paper, we formulate the sequence optimization task as a chance-constrained optimization problem. The key idea is to enforce a high probability of generating valid sequences and also optimize the property of interest. We propose a novel minmax algorithm to simultaneously tighten a bound of the valid chance and optimize the expected property. Extensive experimental results in three domains demonstrate the superiority of our approach over the existing sequence optimization methods.

LazyIter: A Fast Algorithm for Counting Markov Equivalent DAGs and Designing Experiments
Ali Teshnizi, Saber Salehkaleybar, Negar Kiyavash
The causal relationships among a set of random variables are commonly represented by a Directed Acyclic Graph (DAG), where there is a directed edge from variable $X$ to variable $Y$ if $X$ is a direct cause of $Y$. From the purely observational data, the true causal graph can be identified up to a Markov Equivalence Class (MEC), which is a set of DAGs with the same conditional independencies between the variables. The size of an MEC is a measure of complexity for recovering the true causal graph by performing interventions. We propose a method for efficient iteration over possible MECs given intervention results. We utilize the proposed method for computing MEC sizes and experiment design in active and passive learning settings. Compared to previous work for computing the size of MEC, our proposed algorithm reduces the time complexity by a factor of $O(n)$ for sparse graphs where $n$ is the number of variables in the system. Additionally, integrating our approach with dynamic programming, we design an optimal algorithm for passive experiment design. Experimental results show that our proposed algorithms for both computing the size of MEC and experiment design outperform the state of the art.
Certified Robustness to Label-Flipping Attacks via Randomized Smoothing
Elan Rosenfeld, Ezra Winston, Pradeep Ravikumar, Zico Kolter

Machine learning algorithms are known to be susceptible to data poisoning attacks, where an adversary manipulates the training data to degrade performance of the resulting classifier. In this work, we propose a strategy for building linear classifiers that are certifiably robust against a strong variant of label flipping, where each test example is targeted independently. In other words, for each test point, our classifier includes a certification that its prediction would be the same had some number of training labels been changed adversarially. Our approach leverages randomized smoothing, a technique that has previously been used to guarantee---with high probability---test-time robustness to adversarial manipulation of the input to a classifier. We derive a variant which provides a deterministic, analytical bound, sidestepping the probabilistic certificates that traditionally result from the sampling subprocedure. Further, we obtain these certified bounds with minimal additional runtime complexity over standard classification and no assumptions on the train or test distributions. We generalize our results to the multi-class case, providing the first multi-class classification algorithm that is certifiably robust to label-flipping attacks.

Feature Quantization Improves GAN Training
Yang Zhao, Chunyuan Li, Iris Yu, Jianfeng Gao, Changyou Chen

The instability in GANs' training has been a long-standing problem despite remarkable research efforts. We identify that instability issues stem from difficulties of performing feature matching with mini-batch statistics, due to a fragile balance between the fixed target distribution and the progressively generated distribution. In this work, we propose feature quantizatoin (FQ) for the discriminator, to embed both true and fake data samples into a shared discrete space. The quantized values of FQ are constructed as an evolving dictionary, which is consistent with feature statistics of the recent distribution history. Hence, FQ implicitly enables robust feature matching in a compact space. Our method can be easily plugged into existing GAN models, with little computational overhead in training. Extensive experimental results show that the proposed FQ-GAN can improve the FID scores of baseline methods by a large margin on a variety of tasks, including three representative GAN models on 10 benchmarks, achieving new state-of-the-art performance.

Learning and Sampling of Atomic Interventions from Observations
Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Ashwin Maran, Vinodchandran N. Variyam

We study the problem of efficiently estimating the effect of an intervention on a single variable using observational samples. Our goal is to give algorithms with polynomial time and sample complexity in a non-parametric setting. Tian and Pearl (AAAI '02) have exactly characterized the class of causal graphs for which causal effects of atomic interventions can be identified from observational data. We make their result quantitative. Suppose 𝒫 is a causal model on a set V of n observable variables with respect to a given causal graph G, and let do(x) be an identifiable intervention on a variable X. We show that assuming that G has bounded in-degree and bounded c-components (k) and that the observational distribution satisfies a strong positivity condition: (i) [Evaluation] There is an algorithm that outputs with probability 2/3 an evaluator for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O~(n/eps^2) samples from P and O(mn) time. The evaluator can return in O(n) time the probability P^(v) for any assignment v to V. (ii) [Sampling] There is an algorithm that outputs with probability 2/3 a sampler for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O~(n/eps^2) samples from …

Fiduciary Bandits
Gal Bahar, Omer Ben-Porat, Kevin Leyton-Brown, Moshe Tennenholtz

Recommendation systems often face exploration-exploitation tradeoffs: the system can only learn about the desirability of new options by recommending them to some user. Such systems can thus be modeled as multi-armed bandit settings; however, users are self-interested and cannot be made to follow recommendations. We ask whether exploration can nevertheless be performed in a way that scrupulously respects agents' interests---i.e., by a system that acts as a fiduciary. More formally, we introduce a model in which a recommendation system faces an exploration-exploitation tradeoff under the constraint that it can never recommend any action that it knows yields lower reward in expectation than an agent would achieve if it acted alone. Our main contribution is a positive result: an asymptotically optimal, incentive compatible, and ex-ante individually rational recommendation algorithm.

Hierarchically Decoupled Imitation For Morphological Transfer
Donald Hejna, Lerrel Pinto, Pieter Abbeel

Learning long-range behaviors on complex high-dimensional agents is a fundamental problem in robot learning. For such tasks, we argue that transferring learned information from a morphologically simpler agent can massively improve the sample efficiency of a more complex one. To this end, we propose a hierarchical decoupling of policies into two parts: an independently learned low-level policy and a transferable high-level policy. To remedy poor transfer performance due to mismatch in morphologies, we contribute two key ideas. First, we show that incentivizing a complex agent's low-level to imitate a simpler agent's low-level significantly improves zero-shot high-level transfer. Second, we show that KL-regularized training of the high level stabilizes learning and prevents mode-collapse. Finally, on a suite of publicly released navigation and manipulation environments, we demonstrate the applicability of hierarchical transfer on long-range tasks across morphologies.

Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu, Vladimir Braverman, Lin Yang

Regularization for optimization is a crucial technique to avoid overfitting in machine learning. In order to obtain the best performance, we usually train a model by tuning the regularization parameters. It becomes costly, however, when a single round of training takes significant amount of time. Very recently, Neu and Rosasco show that if we run stochastic gradient descent (SGD) on linear regression problems, then by averaging the SGD iterates properly, we obtain a regularized solution. It left open whether the same phenomenon can be achieved for other optimization problems and algorithms. In this paper, we establish an averaging scheme that provably converts the iterates of SGD on an arbitrary strongly convex and smooth objective function to its regularized counterpart with an adjustable regularization parameter. Our approaches can be used for accelerated and preconditioned optimization methods as well. We further show that the same methods work empirically on more general optimization objectives including neural networks. In sum, we obtain adjustable regularization for free for a large class of optimization problems and resolve an open question raised by Neu and Rosasco.

Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles
Dylan Foster, Alexander Rakhlin

A fundamental challenge in contextual bandits is to develop flexible, general-purpose algorithms with computational requirements no worse than classical supervised learning tasks such as classification and regression. Algorithms based on regression have shown promising empirical success, but theoretical guarantees have remained elusive except in special cases. We provide the first universal and optimal reduction from contextual bandits to online regression. We show how to transform any oracle for online regression with a given value function class into an algorithm for contextual bandits with the induced policy class, with no overhead in runtime or memory requirements. We characterize the minimax rates for contextual bandits with general, potentially nonparametric function classes, and show that our algorithm is minimax optimal whenever the oracle obtains the optimal rate for regression. Compared to previous results, our algorithm requires no distributional assumptions beyond realizability, and works even when contexts are chosen adversarially.

Variational Imitation Learning with Diverse-quality Demonstrations
Voot Tangkaratt, Bo Han, Emti Khan, Masashi Sugiyama

Learning from demonstrations can be challenging when the quality of demonstrations is diverse, and even more so when the quality is unknown and there is no additional information to estimate the quality. We propose a new method for imitation learning in such scenarios. We show that simple quality-estimation approaches might fail due to compounding error, and fix this issue by jointly estimating both the quality and reward using a variational approach. Our method is easy to implement within reinforcement-learning frameworks and also achieves state-of-the-art performance on continuous-control benchmarks.Our work enables scalable and data-efficient imitation learning under more realistic settings than before.

Inverse Active Sensing: Modeling and Understanding Timely Decision-Making
Daniel Jarrett, Mihaela van der Schaar

Evidence-based decision-making entails collecting (costly) observations about an underlying phenomenon of interest, and subsequently committing to an (informed) decision on the basis of accumulated evidence. In this setting, active sensing is the goal-oriented problem of efficiently selecting which acquisitions to make, and when and what decision to settle on. As its complement, inverse active sensing seeks to uncover an agent's preferences and strategy given their observable decision-making behavior. In this paper, we develop an expressive, unified framework for the general setting of evidence-based decision-making under endogenous, context-dependent time pressure---which requires negotiating (subjective) tradeoffs between accuracy, speediness, and cost of information. Using this language, we demonstrate how it enables modeling intuitive notions of surprise, suspense, and optimality in decision strategies (the forward problem). Finally, we illustrate how this formulation enables understanding decision-making behavior by quantifying preferences implicit in observed decision strategies (the inverse problem).

Poster Session 4 Tue 14 Jul 10:00 a.m.  

Revisiting Spatial Invariance with Low-Rank Local Connectivity
Gamaleldin Elsayed, Prajit Ramachandran, Jon Shlens, Simon Kornblith

Convolutional neural networks are among the most successful architectures in deep learning with this success at least partially attributable to the efficacy of spatial invariance as an inductive bias. Locally connected layers, which differ from convolutional layers only in their lack of spatial invariance, usually perform poorly in practice. However, these observations still leave open the possibility that some degree of relaxation of spatial invariance may yield a better inductive bias than either convolution or local connectivity. To test this hypothesis, we design a method to relax the spatial invariance of a network layer in a controlled manner; we create a \textit{low-rank} locally connected layer, where the filter bank applied at each position is constructed as a linear combination of basis set of filter banks with spatially varying combining weights. By varying the number of basis filter banks, we can control the degree of relaxation of spatial invariance. In experiments with small convolutional networks, we find that relaxing spatial invariance improves classification accuracy over both convolution and locally connected layers across MNIST, CIFAR-10, and CelebA datasets, thus suggesting that spatial invariance may be an overly restrictive prior.

How recurrent networks implement contextual processing in sentiment analysis
Niru Maheswaranathan, David Sussillo

Neural networks have a remarkable capacity for contextual processing—using recent or nearby inputs to modify processing of current input. For example, in natural language, contextual processing is necessary to correctly interpret negation (e.g. phrases such as "not bad"). However, our ability to understand how networks process context is limited. Here, we propose general methods for reverse engineering recurrent neural networks (RNNs) to identify and elucidate contextual processing. We apply these methods to understand RNNs trained on sentiment classification. This analysis reveals inputs that induce contextual effects, quantifies the strength and timescale of these effects, and identifies sets of these inputs with similar properties. Additionally, we analyze contextual effects related to differential processing of the beginning and end of documents. Using the insights learned from the RNNs we improve baseline Bag-of-Words models with simple extensions that incorporate contextual modification, recovering greater than 90% of the RNN's performance increase over the baseline. This work yields a new understanding of how RNNs process contextual information, and provides tools that should provide similar insight more broadly.

On Learning Sets of Symmetric Elements
Haggai Maron, Or Litany, Gal Chechik, Ethan Fetaya

Learning from unordered sets is a fundamental learning setup, which is attracting increasing attention. Research in this area has focused on the case where elements of the set are represented by feature vectors, and far less emphasis has been given to the common case where set elements themselves adhere to certain symmetries. That case is relevant to numerous applications, from deblurring image bursts to multi-view 3D shape recognition and reconstruction. In this paper, we present a principled approach to learning sets of general symmetric elements. We first characterize the space of linear layers that are equivariant both to element reordering and to the inherent symmetries of elements, like translation in the case of images. We further show that networks that are composed of these layers, called Deep Sets for Symmetric elements layers (DSS), are universal approximators of both invariant and equivariant functions. DSS layers are also straightforward to implement. Finally, we show that they improve over existing set-learning architectures in a series of experiments with images, graphs, and point-clouds.

Sub-Goal Trees -- a Framework for Goal-Based Reinforcement Learning
Tom Jurgenson, Or Avner, Edward Groshev, Aviv Tamar

Many AI problems, in robotics and other domains, are goal-directed, essentially seeking a trajectory leading to some goal state. Reinforcement learning (RL), building on Bellman's optimality equation, naturally optimizes for a single goal, yet can be made goal-directed by augmenting the state with the goal. Instead, we propose a new RL framework, derived from a dynamic programming equation for the all pairs shortest path (APSP) problem, which naturally solves goal-directed queries. We show that this approach has computational benefits for both standard and approximate dynamic programming. Interestingly, our formulation prescribes a novel protocol for computing a trajectory: instead of predicting the next state given its predecessor, as in standard RL, a goal-conditioned trajectory is constructed by first predicting an intermediate state between start and goal, partitioning the trajectory into two. Then, recursively, predicting intermediate points on each sub-segment, until a complete trajectory is obtained. We call this trajectory structure a sub-goal tree. Building on it, we additionally extend the policy gradient methodology to recursively predict sub-goals, resulting in novel goal-based algorithms. Finally, we apply our method to neural motion planning, where we demonstrate significant improvements compared to standard RL on navigating a 7-DoF robot arm between obstacles.

Incremental Sampling Without Replacement for Sequence Models
Kensen Shi, David Bieber, Charles Sutton

Sampling is a fundamental technique, and sampling without replacement is often desirable when duplicate samples are not beneficial. Within machine learning, sampling is useful for generating diverse outputs from a trained model. We present an elegant procedure for sampling without replacement from a broad class of randomized programs, including generative neural models that construct outputs sequentially. Our procedure is efficient even for exponentially-large output spaces. Unlike prior work, our approach is incremental, i.e., samples can be drawn one at a time, allowing for increased flexibility. We also present a new estimator for computing expectations from samples drawn without replacement. We show that incremental sampling without replacement is applicable to many domains, e.g., program synthesis and combinatorial optimization.

Learning To Stop While Learning To Predict
Xinshi Chen, Hanjun Dai, Yu Li, Xin Gao, Le Song

There is a recent surge of interest in designing deep architectures based on the update steps in traditional algorithms, or learning neural networks to improve and replace traditional algorithms. While traditional algorithms have certain stopping criteria for outputting results at different iterations, many algorithm-inspired deep models are restricted to a fixed-depth'' for all inputs. Similar to algorithms, the optimal depth of a deep architecture may be different for different input instances, either to avoidover-thinking'', or because we want to compute less for operations converged already. In this paper, we tackle this varying depth problem using a steerable architecture, where a feed-forward deep model and a variational stopping policy are learned together to sequentially determine the optimal number of layers for each input instance. Training such architecture is very challenging. We provide a variational Bayes perspective and design a novel and effective training procedure which decomposes the task into an oracle model learning stage and an imitation stage. Experimentally, we show that the learned deep model along with the stopping policy improves the performances on a diverse set of tasks, including learning sparse recovery, few-shot meta learning, and computer vision tasks.

Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data
Marc Finzi, Samuel Stanton, Pavel Izmailov, Andrew Wilson

The translation equivariance of convolutional layers enables CNNs to generalize well on image problems. While translation equivariance provides a powerful inductive bias for images, we often additionally desire equivariance to other transformations, such as rotations, especially for non-image data. We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group with a surjective exponential map. Incorporating equivariance to a new group requires implementing only the group exponential and logarithm maps, enabling rapid prototyping. Showcasing the simplicity and generality of our method, we apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems. For Hamiltonian systems, the equivariance of our models is especially impactful, leading to exact conservation of linear and angular momentum.

Automatic Shortcut Removal for Self-Supervised Representation Learning
Matthias Minderer, Olivier Bachem, Neil Houlsby, Michael Tschannen

In self-supervised visual representation learning, a feature extractor is trained on a "pretext task" for which labels can be generated cheaply, without human annotation. A central challenge in this approach is that the feature extractor quickly learns to exploit low-level visual features such as color aberrations or watermarks and then fails to learn useful semantic representations. Much work has gone into identifying such "shortcut" features and hand-designing schemes to reduce their effect. Here, we propose a general framework for mitigating the effect shortcut features. Our key assumption is that those features which are the first to be exploited for solving the pretext task may also be the most vulnerable to an adversary trained to make the task harder. We show that this assumption holds across common pretext tasks and datasets by training a "lens" network to make small image changes that maximally reduce performance in the pretext task. Representations learned with the modified images outperform those learned without in all tested cases. Additionally, the modifications made by the lens reveal how the choice of pretext task and dataset affects the features learned by self-supervision.

Structured Prediction with Partial Labelling through the Infimum Loss
Vivien Cabannnes, Alessandro Rudi, Francis Bach

Annotating datasets is one of the main costs in nowadays supervised learning. The goal of weak supervision is to enable models to learn using only forms of labelling which are cheaper to collect, as partial labelling. This is a type of incomplete annotation where, for each datapoint, supervision is cast as a set of labels containing the real one. The problem of supervised learning with partial labelling has been studied for specific instances such as classification, multi-label, ranking or segmentation, but a general framework is still missing. This paper provides a unified framework based on structured prediction and on the concept of {\em infimum loss} to deal with partial labelling over a wide family of learning problems and loss functions. The framework leads naturally to explicit algorithms that can be easily implemented and for which proved statistical consistency and learning rates. Experiments confirm the superiority of the proposed approach over commonly used baselines.

Online Control of the False Coverage Rate and False Sign Rate
Asaf Weinstein, Aaditya Ramdas
The reproducibility debate has caused a renewed interest in changing how one reports uncertainty, from $p$-value for testing a null hypothesis to a confidence interval (CI) for the corresponding parameter. When CIs for multiple selected parameters are being reported, the analog of the false discovery rate (FDR) is the false coverage rate (FCR), which is the expected ratio of number of reported CIs failing to cover their respective parameters to the total number of reported CIs. Here, we consider the general problem of FCR control in the online setting, where one encounters an infinite sequence of fixed unknown parameters ordered by time. We propose a novel solution to the problem which only requires the scientist to be able to construct marginal CIs. As special cases, our framework yields algorithms for online FDR control and online sign-classification procedures that control the false sign rate (FSR). All of our methodology applies equally well to prediction intervals, having particular implications for selective conformal inference.
Federated Learning with Only Positive Labels
Felix Xinnan Yu, Ankit Singh Rawat, Aditya Menon, Sanjiv Kumar

We consider learning a multi-class classification model in the federated setting, where each user has access to the positive data associated with only a single class. As a result, during each federated learning round, the users need to locally update the classifier without having access to the features and the model parameters for the negative classes. Thus, naively employing conventional decentralized learning such as distributed SGD or Federated Averaging may lead to trivial or extremely poor classifiers. In particular, for embedding based classifiers, all the class embeddings might collapse to a single point. To address this problem, we propose a generic framework for training with only positive labels, namely Federated Averaging with Spreadout (FedAwS), where the server imposes a geometric regularizer after each round to encourage classes to be spreadout in the embedding space. We show, both theoretically and empirically, that FedAwS can almost match the performance of conventional learning where users have access to negative labels. We further extend the proposed method to settings with large output spaces.

Optimal Robust Learning of Discrete Distributions from Batches
Ayush Jain, Alon Orlitsky

Many applications, including natural language processing, sensor networks, collaborative filtering, and federated learning, call for estimating discrete distributions from data collected in batches, some of which may be untrustworthy, erroneous, faulty, or even adversarial. Previous estimators for this setting ran in exponential time, and for some regimes required a suboptimal number of batches. We provide the first polynomial-time estimator that is optimal in the number of batches and achieves essentially the best possible estimation accuracy.

Harmonic Decompositions of Convolutional Networks
Meyer Scetbon, Zaid Harchaoui

We present a description of the function space and the smoothness class associated with a convolutional network using the machinery of reproducing kernel Hilbert spaces. We show that the mapping associated with a convolutional network expands into a sum involving elementary functions akin to spherical harmonics. The functional decomposition can be related to functional ANOVA decompositions in nonparametric statistics. Building off this functional characterization, we obtain statistical bounds which highlight an interesting trade-off between the approximation error and the estimation error.

SoftSort: A Continuous Relaxation for the argsort Operator
Sebastian Prillo, Julian M Eisenschlos

While sorting is an important procedure in computer science, the argsort operator - which takes as input a vector and returns its sorting permutation - has a discrete image and thus zero gradients almost everywhere. This prohibits end-to-end, gradient-based learning of models that rely on the argsort operator. A natural way to overcome this problem is to replace the argsort operator with a continuous relaxation. Recent work has shown a number of ways to do this, but the relaxations proposed so far are computationally complex. In this work we propose a simple continuous relaxation for the argsort operator which has the following qualities: it can be implemented in three lines of code, achieves state-of-the-art performance, is easy to reason about mathematically - substantially simplifying proofs - and is faster than competing approaches. We open source the code to reproduce all of the experiments and results.

Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, Joseph Gonzalez

Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.

XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalisation
Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, Melvin Johnson

Much recent progress in applications of machine learning models to NLP has been driven by benchmarks that evaluate models across a wide variety of tasks. However, these broad-coverage benchmarks have been mostly limited to English, and despite an increasing interest in multilingual models, a benchmark that enables the comprehensive evaluation of such methods on a diverse range of languages and tasks is still missing. To this end, we introduce the Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark, a multi-task benchmark for evaluating the cross-lingual generalization capabilities of multilingual representations across 40 languages and 9 tasks. We demonstrate that while models tested on English reach human performance on many tasks, there is still a sizable gap in the performance of cross-lingually transferred models, particularly on syntactic and sentence retrieval tasks. There is also a wide spread of results across languages. We will release the benchmark to encourage research on cross-lingual learning methods that transfer linguistic knowledge across a diverse and representative set of languages and tasks.

Responsive Safety in Reinforcement Learning by PID Lagrangian Methods
Adam Stooke, Joshua Achiam, Pieter Abbeel

Lagrangian methods are widely used algorithms for constrained optimization problems, but their learning dynamics exhibit oscillations and overshoot which, when applied to safe reinforcement learning, leads to constraint-violating behavior during agent training. We address this shortcoming by proposing a novel Lagrange multiplier update method that utilizes derivatives of the constraint function. We take a controls perspective, wherein the traditional Lagrange multiplier update behaves as \emph{integral} control; our terms introduce \emph{proportional} and \emph{derivative} control, achieving favorable learning dynamics through damping and predictive measures. We apply our PID Lagrangian methods in deep RL, setting a new state of the art in Safety Gym, a safe RL benchmark. Lastly, we introduce a new method to ease controller tuning by providing invariance to the relative numerical scales of reward and cost. Our extensive experiments demonstrate improved performance and hyperparameter robustness, while our algorithms remain nearly as simple to derive and implement as the traditional Lagrangian approach.

Selective Dyna-style Planning Under Limited Model Capacity
Zaheer Abbas, Samuel Sokota, Erin Talvitie, Martha White

In model-based reinforcement learning, planning with an imperfect model of the environment has the potential to harm learning progress. But even when a model is imperfect, it may still contain information that is useful for planning. In this paper, we investigate the idea of using an imperfect model selectively. The agent should plan in parts of the state space where the model would be helpful but refrain from using the model where it would be harmful. An effective selective planning mechanism requires estimating predictive uncertainty, which arises out of aleatoric uncertainty, parameter uncertainty, and model inadequacy, among other sources. Prior work has focused on parameter uncertainty for selective planning. In this work, we emphasize the importance of model inadequacy. We show that heteroscedastic regression can signal predictive uncertainty arising from model inadequacy that is complementary to that which is detected by methods designed for parameter uncertainty, indicating that considering both parameter uncertainty and model inadequacy may be a more promising direction for effective selective planning than either in isolation.

Policy Teaching via Environment Poisoning: Training-time Adversarial Attacks against Reinforcement Learning
Amin Rakhsha, Goran Radanovic, Rati Devidze, Jerry Zhu, Adish Singla

We study a security threat to reinforcement learning where an attacker poisons the learning environment to force the agent into executing a target policy chosen by the attacker. As a victim, we consider RL agents whose objective is to find a policy that maximizes average reward in undiscounted infinite-horizon problem settings. The attacker can manipulate the rewards or the transition dynamics in the learning environment at training-time and is interested in doing so in a stealthy manner. We propose an optimization framework for finding an \emph{optimal stealthy attack} for different measures of attack cost. We provide sufficient technical conditions under which the attack is feasible and provide lower/upper bounds on the attack cost. We instantiate our attacks in two settings: (i) an \emph{offline} setting where the agent is doing planning in the poisoned environment, and (ii) an \emph{online} setting where the agent is learning a policy using a regret-minimization framework with poisoned feedback. Our results show that the attacker can easily succeed in teaching any target policy to the victim under mild conditions and highlight a significant security threat to reinforcement learning agents in practice.

Fully Parallel Hyperparameter Search: Reshaped Space-Filling
Marie-Liesse Cauwet, Camille Couprie, Julien Dehos, Pauline Luc, Jeremy Rapin, Morgane Riviere, Fabien Teytaud, Olivier Teytaud, Nicolas Usunier

Space-filling designs such as Low Discrepancy Sequence (LDS), Latin Hypercube Sampling (LHS) and Jittered Sampling (JS) were proposed for fully parallel hyperparameter search, and were shown to be more effective than random and grid search. We prove that LHS and JS outperform random search only by a constant factor. Consequently, we introduce a new sampling approach based on the reshaping of the search distribution, and we show both theoretically and numerically that it leads to significant gains over random search. Two methods are proposed for the reshaping: Recentering (when the distribution of the optimum is known), and Cauchy transformation (when the distribution of the optimum is unknown). The proposed methods are first validated on artificial experiments and simple real-world tests on clustering and Salmon mappings. Then we demonstrate that they drive performance improvement in a wide range of expensive artificial intelligence tasks, namely attend/infer/repeat, video next frame segmentation forecasting and progressive generative adversarial networks.

A Sample Complexity Separation between Non-Convex and Convex Meta-Learning
Nikunj Saunshi, Yi Zhang, Misha Khodak, Sanjeev Arora
One popular trend in meta-learning is to learn from many training tasks a common initialization for a gradient-based method that can be used to solve a new task with few samples. The theory of meta-learning is still in its early stages, with several recent learning-theoretic analyses of methods such as Reptile [Nichol et al., 2018] being for {\em convex models}. This work shows that convex-case analysis might be insufficient to understand the success of meta-learning, and that even for non-convex models it is important to look inside the optimization black-box, specifically at properties of the optimization trajectory. We construct a simple meta-learning instance that captures the problem of one-dimensional subspace learning. For the convex formulation of linear regression on this instance, we show that the new task sample complexity of any {\em initialization-based meta-learning} algorithm is $\Omega(d)$, where $d$ is the input dimension. In contrast, for the non-convex formulation of a two layer linear network on the same instance, we show that both Reptile and multi-task representation learning can have new task sample complexity of $O(1)$, demonstrating a separation from convex meta-learning. Crucially, analyses of the training dynamics of these methods reveal that they can meta-learn the correct subspace onto …
Explainable k-Means and k-Medians Clustering
Michal Moshkovitz, Sanjoy Dasgupta, Cyrus Rashtchian, Nave Frost

Many clustering algorithms lead to cluster assignments that are hard to explain, partially because they depend on all the features of the data in a complicated way. To improve interpretability, we consider using a small decision tree to partition a data set into clusters, so that clusters can be characterized in a straightforward manner. We study this problem from a theoretical viewpoint, measuring cluster quality by the k-means and k-medians objectives. In terms of negative results, we show that popular top-down decision tree algorithms may lead to clusterings with arbitrarily large cost, and any clustering based on a tree with k leaves must incur an Omega(log k) approximation factor compared to the optimal clustering. On the positive side, for two means/medians, we show that a single threshold cut can achieve a constant factor approximation, and we give nearly-matching lower bounds; for general k > 2, we design an efficient algorithm that leads to an O(k) approximation to the optimal k-medians and an O(k^2) approximation to the optimal k-means. Prior to our work, no algorithms were known with provable guarantees independent of dimension and input size.

Robust One-Bit Recovery via ReLU Generative Networks: Near-Optimal Statistical Rate and Global Landscape Analysis
Shuang Qiu, Xiaohan Wei, Zhuoran Yang
We study the robust one-bit compressed sensing problem whose goal is to design an algorithm that faithfully recovers any sparse target vector $\theta_0\in\mathbb{R}^d$ \textit{uniformly} via $m$ quantized noisy measurements. Specifically, we consider a new framework for this problem where the sparsity is implicitly enforced via mapping a low dimensional representation $x_0 \in \mathbb{R}^k$ through a known $n$-layer ReLU generative network $G:\mathbb{R}^k\rightarrow\mathbb{R}^d$ such that $\theta_0 = G(x_0)$. Such a framework poses low-dimensional priors on $\theta_0$ without a known sparsity basis. We propose to recover the target $G(x_0)$ solving an unconstrained empirical risk minimization (ERM). Under a weak \textit{sub-exponential measurement assumption}, we establish a joint statistical and computational analysis. In particular, we prove that the ERM estimator in this new framework achieves a statistical rate of $m=\widetilde{\mathcal{O}}(kn \log d /\varepsilon^2)$ recovering any $G(x_0)$ uniformly up to an error $\varepsilon$. When the network is shallow (i.e., $n$ is small), we show this rate matches the information-theoretic lower bound up to logarithm factors on $\varepsilon^{-1}$. From the lens of computation, we prove that under proper conditions on the network weights, our proposed empirical risk, despite non-convexity, has no stationary point outside of small neighborhoods around the true representation $x_0$ and its negative multiple; furthermore, …
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu, Yang Song, Jiaming Song, Stefano Ermon

Deep energy-based models (EBMs) are very flexible in distribution parametrization but computationally challenging because of the intractable partition function. They are typically trained via maximum likelihood, using contrastive divergence to approximate the gradient of the KL divergence between data and model distribution. While KL divergence has many desirable properties, other f-divergences have shown advantages in training implicit density generative models such as generative adversarial networks. In this paper, we propose a general variational framework termed f-EBM to train EBMs using any desired f-divergence. We introduce a corresponding optimization algorithm and prove its local convergence property with non-linear dynamical systems theory. Experimental results demonstrate the superiority of f-EBM over contrastive divergence, as well as the benefits of training EBMs using f-divergences other than KL.

Optimally Solving Two-Agent Decentralized POMDPs Under One-Sided Information Sharing
Yuxuan Xie, Jilles Dibangoye, Olivier Buffet

Optimally solving decentralized partially observable Markov decision processes under either full or no information sharing received significant attention in recent years. However, little is known about how partial information sharing affects existing theory and algorithms. This paper addresses this question for a team of two agents, with one-sided information sharing---\ie both agents have imperfect information about the state of the world, but only one has access to what the other sees and does. From the perspective of a central planner, we show that the original problem can be reformulated into an equivalent information-state Markov decision process and solved as such. Besides, we prove that the optimal value function exhibits a specific form of uniform continuity. We also present a heuristic search algorithm utilizing this property and providing the first results for this family of problems.

Error Estimation for Sketched SVD via the Bootstrap
Miles Lopes, N. Benjamin Erichson, Michael Mahoney

In order to compute fast approximations to the singular value decompositions (SVD) of very large matrices, randomized sketching algorithms have become a leading approach. However, a key practical difficulty of sketching an SVD is that the user does not know how far the sketched singular vectors/values are from the exact ones. Indeed, the user may be forced to rely on analytical worst-case error bounds, which may not account for the unique structure of a given problem. As a result, the lack of tools for error estimation often leads to much more computation than is really necessary. To overcome these challenges, this paper develops a fully data-driven bootstrap method that numerically estimates the actual error of sketched singular vectors/values. Furthermore, the method is computationally inexpensive, because it operates only on sketched objects, and hence it requires no extra passes over the full matrix being factored.

A simpler approach to accelerated optimization: iterative averaging meets optimism
Pooria Joulani, Anant Raj, András György, Csaba Szepesvari

Recently there have been several attempts to extend Nesterov's accelerated algorithm to smooth stochastic and variance-reduced optimization. In this paper, we show that there is a simpler approach to acceleration: applying optimistic online learning algorithms and querying the gradient oracle at the online average of the intermediate optimization iterates. In particular, we tighten a recent result of Cutkosky (2019) to demonstrate theoretically that online iterate averaging results in a reduced optimization gap, independently of the algorithm involved. We show that carefully combining this technique with existing generic optimistic online learning algorithms yields the optimal accelerated rates for optimizing strongly-convex and non-strongly-convex, possibly composite objectives, with deterministic as well as stochastic first-order oracles. We further extend this idea to variance-reduced optimization. Finally, we also provide ``universal'' algorithms that achieve the optimal rate for smooth and non-smooth composite objectives simultaneously without further tuning, generalizing the results of Kavis et al. (2019) and solving a number of their open problems.

Global Concavity and Optimization in a Class of Dynamic Discrete Choice Models
Yiding Feng, Ekaterina Khmelnitskaya, Denis Nekipelov

Discrete choice models with unobserved heterogeneity are commonly used Econometric models for dynamic Economic behavior which have been adopted in practice to predict behavior of individuals and firms from schooling and job choices to strategic decisions in market competition. These models feature optimizing agents who choose among a finite set of options in a sequence of periods and receive choice-specific payoffs that depend on both variables that are observed by the agent and recorded in the data and variables that are only observed by the agent but not recorded in the data. Existing work in Econometrics assumes that optimizing agents are fully rational and requires finding a functional fixed point to find the optimal policy. We show that in an important class of discrete choice models the value function is globally concave in the policy. That means that simple algorithms that do not require fixed point computation, such as the policy gradient algorithm, globally converge to the optimal policy. This finding can both be used to relax behavioral assumption regarding the optimizing agents and to facilitate Econometric analysis of dynamic behavior. In particular, we demonstrate significant computational advantages in using a simple implementation policy gradient algorithm over existing “nested fixed …

Influence Diagram Bandits: Variational Thompson Sampling for Structured Bandit Problems
Tong Yu, Branislav Kveton, Zheng Wen, Ruiyi Zhang, Ole J. Mengshoel

We propose a novel framework for structured bandits, which we call an influence diagram bandit. Our framework captures complex statistical dependencies between actions, latent variables, and observations; and thus unifies and extends many existing models, such as combinatorial semi-bandits, cascading bandits, and low-rank bandits. We develop novel online learning algorithms that learn to act efficiently in our models. The key idea is to track a structured posterior distribution of model parameters, either exactly or approximately. To act, we sample model parameters from their posterior and then use the structure of the influence diagram to find the most optimistic action under the sampled parameters. We empirically evaluate our algorithms in three structured bandit problems, and show that they perform as well as or better than problem-specific state-of-the-art baselines.

On the Theoretical Properties of the Network Jackknife
Qiaohui Lin, Robert Lunde, Purnamrita Sarkar

We study the properties of a leave-node-out jackknife procedure for network data. Under the sparse graphon model, we prove an Efron-Stein-type inequality, showing that the network jackknife leads to conservative estimates of the variance (in expectation) for any network functional that is invariant to node permutation. For a general class of count functionals, we also establish consistency of the network jackknife. We complement our theoretical analysis with a range of simulated and real-data examples and show that the network jackknife offers competitive performance in cases where other resampling methods are known to be valid. In fact, for several network statistics, we see that the jackknife provides more accurate inferences compared to related methods such as subsampling.

Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning
Zhaohan Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Remi Munos, Mohammad Gheshlaghi Azar

Learning a good representation is an essential component for deep reinforcement learning (RL). Representation learning is especially important in multitask and partially observable settings where building a representation of the unknown environment is crucial to solve the tasks. Here we introduce Predictions of Bootstrapped Latents (PBL), a simple and flexible self-supervised representation learning algorithm for multitask deep RL. PBL builds on multistep predictive representations of future observations, and focuses on capturing structured information about environment dynamics. Specifically, PBL trains its representation by predicting latent embeddings of future observations. These latent embeddings are themselves trained to be predictive of the aforementioned representations. These predictions form a bootstrapping effect, allowing the agent to learn more about the key aspects of the environment dynamics. In addition, by defining prediction tasks completely in latent space, PBL provides the flexibility of using multimodal observations involving pixel images, language instructions, rewards and more. We show in our experiments that PBL delivers across-the-board improved performance over state of the art deep RL agents in the DMLab-30 multitask setting.

SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Jakkam Reddi, Sebastian Stich, Ananda Theertha Suresh

Federated learning is a key scenario in modern large-scale machine learning where the data remains distributed over a large number of clients and the task is to learn a centralized model without transmitting the client data. The standard optimization algorithm used in this setting is Federated Averaging (FedAvg) due to its low communication cost. We obtain a tight characterization of the convergence of FedAvg and prove that heterogeneity (non-iid-ness) in the client's data results in a `drift' in the local updates resulting in poor performance.

As a solution, we propose a new algorithm (SCAFFOLD) which uses control variates (variance reduction) to correct for the `client drift'. We prove that SCAFFOLD requires significantly fewer communication rounds and is not affected by data heterogeneity or client sampling. Further, we show that (for quadratics) SCAFFOLD can take advantage of similarity in the client's data yielding even faster convergence. The latter is the first result to quantify the usefulness of local-steps in distributed optimization.

Deep Isometric Learning for Visual Recognition
Haozhi Qi, Chong You, Xiaolong Wang, Yi Ma, Jitendra Malik

Initialization, normalization, and skip connections are believed to be three indispensable techniques for training very deep convolutional neural networks and obtaining state-of-the-art performance. This paper shows that deep vanilla ConvNets without normalization nor skip connections can also be trained to achieve surprisingly good performance on standard image recognition benchmarks. This is achieved by enforcing the convolution kernels to be near isometric during initialization and training, as well as by using a variant of ReLU that is shifted towards being isometric. Further experiments show that if combined with skip connections, such near isometric networks can achieve performances on par with (for ImageNet) and better than (for COCO) the standard ResNet, even without normalization at all. Our code is available at https://github.com/HaozhiQi/ISONet.

Logarithmic Regret for Adversarial Online Control
Dylan Foster, Max Simchowitz
We introduce a new algorithm for online linear-quadratic control in a known system subject to adversarial disturbances. Existing regret bounds for this setting scale as $\sqrt{T}$ unless strong stochastic assumptions are imposed on the disturbance process. We give the first algorithm with logarithmic regret for arbitrary adversarial disturbance sequences, provided the state and control costs are given by known quadratic functions. Our algorithm and analysis use a characterization for the optimal offline control law to reduce the online control problem to (delayed) online learning with approximate advantage functions. Compared to previous techniques, our approach does not need to control movement costs for the iterates, leading to logarithmic regret.
Generative Pretraining From Pixels
Mark Chen, Alec Radford, Rewon Child, Jeffrey K Wu, Heewoo Jun, David Luan, Ilya Sutskever

Inspired by progress in unsupervised representation learning for natural language, we examine whether similar models can learn useful representations for images. We train a sequence Transformer to auto-regressively predict pixels, without incorporating knowledge of the 2D input structure. Despite training on low-resolution ImageNet without labels, we find that a GPT-2 scale model learns strong image representations as measured by linear probing, fine-tuning, and low-data classification. On CIFAR-10, we achieve 96.3% accuracy with a linear probe, outperforming a supervised Wide ResNet, and 99.0% accuracy with full fine-tuning, matching the top supervised pre-trained models. We are also competitive with self-supervised benchmarks on ImageNet when substituting pixels for a VQVAE encoding, achieving 69.0% top-1 accuracy on a linear probe of our features.

Differentiable Likelihoods for Fast Inversion of 'Likelihood-Free' Dynamical Systems
Hans Kersting, Nicholas Krämer, Martin Schiegg, Christian Daniel, Michael Schober, Philipp Hennig

Likelihood-free (a.k.a. simulation-based) inference problems are inverse problems with expensive, or intractable, forward models. ODE inverse problems are commonly treated as likelihood-free, as their forward map has to be numerically approximated by an ODE solver. This, however, is not a fundamental constraint but just a lack of functionality in classic ODE solvers, which do not return a likelihood but a point estimate. To address this shortcoming, we employ Gaussian ODE filtering (a probabilistic numerical method for ODEs) to construct a local Gaussian approximation to the likelihood. This approximation yields tractable estimators for the gradient and Hessian of the (log-)likelihood. Insertion of these estimators into existing gradient-based optimization and sampling methods engenders new solvers for ODE inverse problems. We demonstrate that these methods outperform standard likelihood-free approaches on three benchmark-systems.

Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data
Felipe Petroski Such, Aditya Rawal, Joel Lehman, Ken Stanley, Jeffrey Clune

This paper investigates the intriguing question of whether we can create learning algorithms that automatically generate training data, learning environments, and curricula in order to help AI agents rapidly learn. We show that such algorithms are possible via Generative Teaching Networks (GTNs), a general approach that is, in theory, applicable to supervised, unsupervised, and reinforcement learning, although our experiments only focus on the supervised case. GTNs are deep neural networks that generate data and/or training environments that a learner (e.g. a freshly initialized neural network) trains on for a few SGD steps before being tested on a target task. We then differentiate \emph{through the entire learning process} via meta-gradients to update the GTN parameters to improve performance on the target task. This paper introduces GTNs, discusses their potential, and showcases that they can substantially accelerate learning. We also demonstrate a practical and exciting application of GTNs: accelerating the evaluation of candidate architectures for neural architecture search (NAS). GTN-NAS improves the NAS state of the art, finding higher performing architectures when controlling for the search proposal mechanism. GTN-NAS also is competitive with the overall state of the art approaches, which achieve top performance while using orders of magnitude less computation than …

Topological Autoencoders
Michael Moor, Max Horn, Bastian Rieck, Karsten Borgwardt

We propose a novel approach for preserving topological structures of the input space in latent representations of autoencoders. Using persistent homology, a technique from topological data analysis, we calculate topological signatures of both the input and latent space to derive a topological loss term. Under weak theoretical assumptions, we construct this loss in a differentiable manner, such that the encoding learns to retain multi-scale connectivity information. We show that our approach is theoretically well-founded and that it exhibits favourable latent representations on a synthetic manifold as well as on real-world image data sets, while preserving low reconstruction errors.

When are Non-Parametric Methods Robust?
Robi Bhattacharjee, Kamalika Chaudhuri

A growing body of research has shown that many classifiers are susceptible to adversarial examples -- small strategic modifications to test inputs that lead to misclassification. In this work, we study general non-parametric methods, with a view towards understanding when they are robust to these modifications. We establish general conditions under which non-parametric methods are r-consistent -- in the sense that they converge to optimally robust and accurate classifiers in the large sample limit.

Concretely, our results show that when data is well-separated, nearest neighbors and kernel classifiers are r-consistent, while histograms are not. For general data distributions, we prove that preprocessing by Adversarial Pruning (Yang et. al., 2019)-- that makes data well-separated -- followed by nearest neighbors or kernel classifiers also leads to r-consistency.

Poster Session 5 Tue 14 Jul 11:00 a.m.  

Understanding and Mitigating the Tradeoff between Robustness and Accuracy
Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John Duchi, Percy Liang

Adversarial training augments the training set with perturbations to improve the robust error (over worst-case perturbations), but it often leads to an increase in the standard error (on unperturbed test inputs). Previous explanations for this tradeoff rely on the assumption that no predictor in the hypothesis class has low standard and robust error. In this work, we precisely characterize the effect of augmentation on the standard error in linear regression when the optimal linear predictor has zero standard and robust error. In particular, we show that the standard error could increase even when the augmented perturbations have noiseless observations from the optimal linear predictor. We then prove that the recently proposed robust self-training (RST) estimator improves robust error without sacrificing standard error for noiseless linear regression. Empirically, for neural networks, we find that RST with different adversarial training methods improves both standard and robust error for random and adversarial rotations and adversarial l_infty perturbations in CIFAR-10.

Adversarial Robustness for Code
Pavol Bielik, Martin Vechev

Machine learning and deep learning in particular has been recently used to successfully address many tasks in the domain of code including -- finding and fixing bugs, code completion, decompilation, malware detection, type inference and many others. However, the issue of adversarial robustness of models for code has gone largely unnoticed. In this work, we explore this issue by: (i) instantiating adversarial attacks for code (a domain with discrete and highly structured inputs), (ii) showing that, similar to other domains, neural models for code are vulnerable to adversarial attacks, and (iii) developing a set of novel techniques that enable training robust and accurate models of code.

Smaller, more accurate regression forests using tree alternating optimization
Arman Zharmagambetov, Miguel Carreira-Perpinan

Regression forests, based on ensemble approaches such as bagging or boosting, have long been recognized as the leading off-the-shelf method for regression. However, forests rely on a greedy top-down procedure such as CART to learn each tree. We extend a recent algorithm for learning classification trees, Tree Alternating Optimization (TAO), to the regression case, and use it with bagging to construct regression forests of oblique trees, having hyperplane splits at the decision nodes. In a wide range of datasets, we show that the resulting forests exceed the accuracy of state-of-the-art algorithms such as random forests, AdaBoost or gradient boosting, often considerably, while yielding forests that have usually fewer and shallower trees and hence fewer parameters and faster inference overall. This result has an immense practical impact and advocates for the power of optimization in ensemble learning.

Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation
Amr Mohamed Alexandari, Anshul Kundaje, Avanti Shrikumar

Label shift refers to the phenomenon where the prior class probability p(y) changes between the training and test distributions, while the conditional probability p(x|y) stays fixed. Label shift arises in settings like medical diagnosis, where a classifier trained to predict disease given symptoms must be adapted to scenarios where the baseline prevalence of the disease is different. Given estimates of p(y|x) from a predictive model, Saerens et al. proposed an efficient maximum likelihood algorithm to correct for label shift that does not require model retraining, but a limiting assumption of this algorithm is that p(y|x) is calibrated, which is not true of modern neural networks. Recently, Black Box Shift Learning (BBSL) and Regularized Learning under Label Shifts (RLLS) have emerged as state-of-the-art techniques to cope with label shift when a classifier does not output calibrated probabilities, but both methods require model retraining with importance weights and neither has been benchmarked against maximum likelihood. Here we (1) show that combining maximum likelihood with a type of calibration we call bias-corrected calibration outperforms both BBSL and RLLS across diverse datasets and distribution shifts, (2) prove that the maximum likelihood objective is concave, and (3) introduce a principled strategy for estimating source-domain priors …

LowFER: Low-rank Bilinear Pooling for Link Prediction
Saadullah Amin, Stalin Varanasi, Katherine Ann Dunfield, Günter Neumann

Knowledge graphs are incomplete by nature, with only a limited number of observed facts from world knowledge being represented as structured relations between entities. To partly address this issue, an important task in statistical relational learning is that of link prediction or knowledge graph completion. Both linear and non-linear models have been proposed to solve the problem of knowledge graph completion, with the former being parameter efficient and interpretable. Bilinear models, while expressive, are prone to overfitting and lead to quadratic growth of parameters in number of relations. Simpler models have become more standard, with certain constraints on bilinear maps as relation parameters. In this work, we propose a factorized bilinear pooling model, commonly used in multi-modal learning, for better fusion of entities and relations, leading to an efficient and constraint-free model. We prove that our model is fully expressive, providing bounds on embedding dimensionality and factorization rank. Our model naturally generalizes TuckER (Balazevic et al., 2019), which has been shown to generalize other models, as efficient low-rank approximation without substantially compromising performance. Due to low-rank approximation, the model complexity can be controlled by the factorization rank, avoiding the possible cubic growth of TuckER. Empirically, we evaluate on real-world datasets, …

When Explanations Lie: Why Many Modified BP Attributions Fail
Leon Sixt, Maximilian Granz, Tim Landgraf

Attribution methods aim to explain a neural network's prediction by highlighting the most relevant image areas. A popular approach is to backpropagate (BP) a custom relevance score using modified rules, rather than the gradient. We analyze an extensive set of modified BP methods: Deep Taylor Decomposition, Layer-wise Relevance Propagation (LRP), Excitation BP, PatternAttribution, DeepLIFT, Deconv, RectGrad, and Guided BP. We find empirically that the explanations of all mentioned methods, except for DeepLIFT, are independent of the parameters of later layers. We provide theoretical insights for this surprising behavior and also analyze why DeepLIFT does not suffer from this limitation. Empirically, we measure how information of later layers is ignored by using our new metric, cosine similarity convergence (CSC). The paper provides a framework to assess the faithfulness of new and existing modified BP methods theoretically and empirically.

Optimal Non-parametric Learning in Repeated Contextual Auctions with Strategic Buyer
Alexey Drutsa
We study learning algorithms that optimize revenue in repeated contextual posted-price auctions where a seller interacts with a single strategic buyer that seeks to maximize his cumulative discounted surplus. The buyer's valuation of a good is a fixed private function of a $d$-dimensional context (feature) vector that describes the good being sold. In contrast to existing studies on repeated contextual auctions with strategic buyer, in our work, the seller is not assumed to know the parametric model that underlies this valuation function. We introduce a novel non-parametric learning algorithm that is horizon-independent and has tight strategic regret upper bound of $\Theta(T^{d/(d+1)})$. We also non-trivially generalize several value-localization techniques of non-contextual repeated auctions to make them effective in the considered contextual non-parametric learning of the buyer valuation function.
Rethinking Bias-Variance Trade-off for Generalization of Neural Networks
Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, Yi Ma

The classical bias-variance trade-off predicts that bias decreases and variance increase with model complexity, leading to a U-shaped risk curve. Recent work calls this into question for neural networks and other over-parameterized models, for which it is often observed that larger models generalize better. We provide a simple explanation of this by measuring the bias and variance of neural networks: while the bias is {\em monotonically decreasing} as in the classical theory, the variance is {\em unimodal} or bell-shaped: it increases then decreases with the width of the network. We vary the network architecture, loss function, and choice of dataset and confirm that variance unimodality occurs robustly for all models we considered. The risk curve is the sum of the bias and variance curves and displays different qualitative shapes depending on the relative scale of bias and variance, with the double descent in the recent literature as a special case. We corroborate these empirical results with a theoretical analysis of two-layer linear networks with random first layer. Finally, evaluation on out-of-distribution data shows that most of the drop in accuracy comes from increased bias while variance increases by a relatively small amount. Moreover, we find that deeper models decrease bias …

Optimization and Analysis of the pAp@k Metric for Recommender Systems
Gaurush Hiranandani, Warut Vijitbenjaronk, Sanmi Koyejo, Prateek Jain

Modern recommendation and notification systems must be robust to data imbalance, limitations on the number of recommendations/notifications, and heterogeneous engagement profiles across users. The pAp@k metric, which combines the partial-AUC and the precision@k metrics, was recently proposed to evaluate such recommendation systems and has been used in real-world deployments. Conceptually, pAp@k measures the probability of correctly ranking a top-ranked positive instance over top-ranked negative instances. Due to the combinatorial aspect surfaced by top-ranked points, little is known about the characteristics and optimization methods of pAp@k. In this paper, we analyze the learning-theoretic properties of pAp@k, particularly its benefits in evaluating modern recommender systems, and propose novel surrogates that are consistent under certain data regularity conditions. We then provide gradient descent based algorithms to optimize the surrogates directly. Our analysis and experimental evaluation suggest that pAp@k indeed exhibits a certain dual behavior with respect to partial-AUC and precision@k. Moreover, the proposed methods outperform all the baselines in various applications. Taken together, our results motivate the use of pAp@k for large-scale recommender systems with heterogeneous user-engagement.

Near-linear time Gaussian process optimization with adaptive batching and resparsification
Daniele Calandriello, Luigi Carratino, Alessandro Lazaric, Michal Valko, Lorenzo Rosasco

Gaussian processes (GP) are one of the most successful frameworks to model uncertainty. However, GP optimization (e.g., GP-UCB) suffers from major scalability issues. Experimental time grows linearly with the number of evaluations, unless candidates are selected in batches (e.g., using GP-BUCB) and evaluated in parallel. Furthermore, computational cost is often prohibitive since algorithms such as GP-BUCB require a time at least quadratic in the number of dimensions and iterations to select each batch.

In this paper, we introduce BBKB (Batch Budgeted Kernel Bandits), the first no-regret GP optimization algorithm that provably runs in near-linear time and selects candidates in batches. This is obtained with a new guarantee for the tracking of the posterior variances that allows BBKB to choose increasingly larger batches, improving over GP-BUCB. Moreover, we show that the same bound can be used to adaptively delay costly updates to the sparse GP approximation used by BBKB, achieving a near-constant per-step amortized cost. These findings are then confirmed in several experiments, where BBKB is much faster than state-of-the-art methods.

Learning Deep Kernels for Non-Parametric Two-Sample Tests
Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, D.J. Sutherland

We propose a class of kernel-based two-sample tests, which aim to determine whether two sets of samples are drawn from the same distribution. Our tests are constructed from kernels parameterized by deep neural nets, trained to maximize test power. These tests adapt to variations in distribution smoothness and shape over space, and are especially suited to high dimensions and complex data. By contrast, the simpler kernels used in prior kernel testing work are spatially homogeneous, and adaptive only in lengthscale. We explain how this scheme includes popular classifier-based two-sample tests as a special case, but improves on them in general. We provide the first proof of consistency for the proposed adaptation method, which applies both to kernels on deep features and to simpler radial basis kernels or multiple kernel learning. In experiments, we establish the superior performance of our deep kernels in hypothesis testing on benchmark and real-world data. The code of our deep-kernel-based two-sample tests is available at github.com/fengliu90/DK-for-TST.

A Swiss Army Knife for Minimax Optimal Transport
Sofien Dhouib, Ievgen Redko, Tanguy Kerdoncuff, Rémi Emonet, Marc Sebban

The Optimal transport (OT) problem and its associated Wasserstein distance have recently become a topic of great interest in the machine learning community. However, the underlying optimization problem is known to have two major restrictions: (i) it largely depends on the choice of the cost function and (ii) its sample complexity scales exponentially with the dimension. In this paper, we propose a general formulation of a minimax OT problem that can tackle these restrictions by jointly optimizing the cost matrix and the transport plan, allowing us to define a robust distance between distributions. We propose to use a cutting-set method to solve this general problem and show its links and advantages compared to other existing minimax OT approaches. Additionally, we use this method to define a notion of stability allowing us to select the most robust cost matrix. Finally, we provide an experimental study highlighting the efficiency of our approach.

Bandits with Adversarial Scaling
Thodoris Lykouris, Vahab Mirrokni, Renato Leme

We study "adversarial scaling", a multi-armed bandit model where rewards have a stochastic and an adversarial component. Our model captures display advertising where the "click-through-rate" can be decomposed to a (fixed across time) arm-quality component and a non-stochastic user-relevance component (fixed across arms). Despite the relative stochasticity of our model, we demonstrate two settings where most bandit algorithms suffer. On the positive side, we show that two algorithms, one from the action elimination and one from the mirror descent family are adaptive enough to be robust to adversarial scaling. Our results shed light on the robustness of adaptive parameter selection in stochastic bandits, which may be of independent interest.

Consistent Structured Prediction with Max-Min Margin Markov Networks
Alex Nowak, Francis Bach, Alessandro Rudi
Max-margin methods for binary classification such as the support vector machine (SVM) have been extended to the structured prediction setting under the name of max-margin Markov networks ($M^3N$), or more generally structural SVMs. Unfortunately, these methods are statistically inconsistent when the relationship between inputs and labels is far from deterministic. We overcome such limitations by defining the learning problem in terms of a ``max-min'' margin formulation, naming the resulting method max-min margin Markov networks ($M^4N$). We prove consistency and finite sample generalization bounds for $M^4N$ and provide an explicit algorithm to compute the estimator. The algorithm achieves a generalization error of $O(1/\sqrt{n})$ for a total cost of $O(n)$ projection-oracle calls (which have at most the same cost as the max-oracle from $M^3N$). Experiments on multi-class classification, ordinal regression, sequence prediction and matching demonstrate the effectiveness of the proposed method.
Domain Adaptive Imitation Learning
Kuno Kim, Yihong Gu, Jiaming Song, Shengjia Zhao, Stefano Ermon

We study the question of how to imitate tasks across domains with discrepancies such as embodiment, viewpoint, and dynamics mismatch. Many prior works require paired, aligned demonstrations and an additional RL step that requires environment interactions. However, paired, aligned demonstrations are seldom obtainable and RL procedures are expensive. In this work, we formalize the Domain Adaptive Imitation Learning (DAIL) problem - a unified framework for imitation learning in the presence of viewpoint, embodiment, and/or dynamics mismatch. Informally, DAIL is the process of learning how to perform a task optimally, given demonstrations of the task in a distinct domain. We propose a two step approach to DAIL: alignment followed by adaptation. In the alignment step we execute a novel unsupervised MDP alignment algorithm, Generative Adversarial MDP Alignment (GAMA), to learn state and action correspondences from \emph{unpaired, unaligned} demonstrations. In the adaptation step we leverage the correspondences to zero-shot imitate tasks across domains. To describe when DAIL is feasible via alignment and adaptation, we introduce a theory of MDP alignability. We experimentally evaluate GAMA against baselines in embodiment, viewpoint, and dynamics mismatch scenarios where aligned demonstrations don't exist and show the effectiveness of our approach

Online metric algorithms with untrusted predictions
Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, Bertrand Simon

Machine-learned predictors, although achieving very good results for inputs resembling training data, cannot possibly provide perfect predictions in all situations. Still, decision-making systems that are based on such predictors need not only to benefit from good predictions but also to achieve a decent performance when the predictions are inadequate. In this paper, we propose a prediction setup for arbitrary metrical task systems (MTS) (e.g., caching, k-server and convex body chasing) and online matching on the line. We utilize results from the theory of online algorithms to show how to make the setup robust. Specifically for caching, we present an algorithm whose performance, as a function of the prediction error, is exponentially better than what is achievable for general MTS. Finally, we present an empirical evaluation of our methods on real world datasets, which suggests practicality.

Quantum Expectation-Maximization for Gaussian mixture models
Alessandro Luongo, Iordanis Kerenidis, Anupam Prakash

We define a quantum version of Expectation-Maximization (QEM), a fundamental tool in unsupervised machine learning, often used to solve Maximum Likelihood (ML) and Maximum A Posteriori (MAP) estimation problems. We use QEM to fit a Gaussian Mixture Model, and show how to generalize it to fit mixture models with base distributions in the exponential family. Given quantum access to a dataset, our algorithm has convergence and precision guarantees similar to the classical algorithm, while the runtime is polylogarithmic in the number of elements in the training set and polynomial in other parameters, such as the dimension of the feature space and the number of components in the mixture. We discuss the performance of the algorithm on a dataset that is expected to be classified successfully by classical EM and provide guarantees for its runtime.

Causal Structure Discovery from Distributions Arising from Mixtures of DAGs
Basil Saeed, Snigdha Panigrahi, Caroline Uhler

We consider distributions arising from a mixture of causal models, where each model is represented by a directed acyclic graph (DAG). We provide a graphical representation of such mixture distributions and prove that this representation encodes the conditional independence relations of the mixture distribution. We then consider the problem of structure learning based on samples from such distributions. Since the mixing variable is latent, we consider causal structure discovery algorithms such as FCI that can deal with latent variables. We show that such algorithms recover a “union” of the component DAGs and can identify variables whose conditional distribution across the component DAGs vary. We demonstrate our results on synthetic and real data showing that the inferred graph identifies nodes that vary between the different mixture components. As an immediate application, we demonstrate how retrieval of this causal information can be used to cluster samples according to each mixture component.

Stochastically Dominant Distributional Reinforcement Learning
John Martin, Michal Lyskawinski, Xiaohu Li, Brendan Englot

We describe a new approach for managing aleatoric uncertainty in the Reinforcement Learning (RL) paradigm. Instead of selecting actions according to a single statistic, we propose a distributional method based on the second-order stochastic dominance (SSD) relation. This compares the inherent dispersion of random returns induced by actions, producing a comprehensive evaluation of the environment’s uncertainty. The necessary conditions for SSD require estimators to predict accurate second moments. To accommodate this, we map the distributional RL problem to a Wasserstein gradient flow, treating the distributional Bellman residual as a potential energy functional. We propose a particle-based algorithm for which we prove optimality and convergence. Our experiments characterize the algorithm’s performance and demonstrate how uncertainty and performance are better balanced using an SSD policy than with other risk measures.

Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse, Michael Gutmann

Implicit stochastic models, where the data-generation distribution is intractable but sampling is possible, are ubiquitous in the natural sciences. The models typically have free parameters that need to be inferred from data collected in scientific experiments. A fundamental question is how to design the experiments so that the collected data are most useful. The field of Bayesian experimental design advocates that, ideally, we should choose designs that maximise the mutual information (MI) between the data and the parameters. For implicit models, however, this approach is severely hampered by the high computational cost of computing posteriors and maximising MI, in particular when we have more than a handful of design variables to optimise. In this paper, we propose a new approach to Bayesian experimental design for implicit models that leverages recent advances in neural MI estimation to deal with these issues. We show that training a neural network to maximise a lower bound on MI allows us to jointly determine the optimal design and the posterior. Simulation studies illustrate that this gracefully extends Bayesian experimental design for implicit models to higher design dimensions.

Information-Theoretic Local Minima Characterization and Regularization
Zhiwei Jia, Hao Su

Recent advances in deep learning theory have evoked the study of generalizability across different local minima of deep neural networks (DNNs). While current work focused on either discovering properties of good local minima or developing regularization techniques to induce good local minima, no approach exists that can tackle both problems. We achieve these two goals successfully in a unified manner. Specifically, based on the observed Fisher information we propose a metric both strongly indicative of generalizability of local minima and effectively applied as a practical regularizer. We provide theoretical analysis including a generalization bound and empirically demonstrate the success of our approach in both capturing and improving the generalizability of DNNs. Experiments are performed on CIFAR-10, CIFAR-100 and ImageNet for various network architectures.

Which Tasks Should Be Learned Together in Multi-task Learning?
Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, Silvio Savarese

Many computer vision applications require solving multiple tasks in real-time. A neural network can be trained to solve multiple tasks simultaneously using multi-task learning. This can save computation at inference time as only a single network needs to be evaluated. Unfortunately, this often leads to inferior overall performance as task objectives can compete, which consequently poses the question: which tasks should and should not be learned together in one network when employing multi-task learning? We study task cooperation and competition in several different learning settings and propose a framework for assigning tasks to a few neural networks such that cooperating tasks are computed by the same neural network, while competing tasks are computed by different networks. Our framework offers a time-accuracy trade-off and can produce better accuracy using less inference time than not only a single large multi-task neural network but also many single-task networks.

Explore, Discover and Learn: Unsupervised Discovery of State-Covering Skills
Victor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giro-i-Nieto, Jordi Torres

Acquiring abilities in the absence of a task-oriented reward function is at the frontier of reinforcement learning research. This problem has been studied through the lens of empowerment, which draws a connection between option discovery and information theory. Information-theoretic skill discovery methods have garnered much interest from the community, but little research has been conducted in understanding their limitations. Through theoretical analysis and empirical evidence, we show that existing algorithms suffer from a common limitation -- they discover options that provide a poor coverage of the state space. In light of this, we propose Explore, Discover and Learn (EDL), an alternative approach to information-theoretic skill discovery. Crucially, EDL optimizes the same information-theoretic objective derived from the empowerment literature, but addresses the optimization problem using different machinery. We perform an extensive evaluation of skill discovery methods on controlled environments and show that EDL offers significant advantages, such as overcoming the coverage problem, reducing the dependence of learned skills on the initial state, and allowing the user to define a prior over which behaviors should be learned.

Kernel Methods for Cooperative Multi-Agent Contextual Bandits
Abhimanyu Dubey, Alex `Sandy' Pentland

Cooperative multi-agent decision making involves a group of agents cooperatively solving learning problems while communicating over a network with delays. In this paper, we consider the kernelised contextual bandit problem, where the reward obtained by an agent is an arbitrary linear function of the contexts' images in the related reproducing kernel Hilbert space (RKHS), and a group of agents must cooperate to collectively solve their unique decision problems. For this problem, we propose Coop-KernelUCB, an algorithm that provides near-optimal bounds on the per-agent regret, and is both computationally and communicatively efficient. For special cases of the cooperative problem, we also provide variants of Coop-KernelUCB that provides optimal per-agent regret. In addition, our algorithm generalizes several existing results in the multi-agent bandit setting. Finally, on a series of both synthetic and real-world multi-agent network benchmarks, we demonstrate that our algorithm significantly outperforms existing benchmarks.

Explainable and Discourse Topic-aware Neural Language Understanding
Yatin Chaudhary, Hinrich Schuetze, Pankaj Gupta

Marrying topic models and language models exposes language understanding to a broader source of document-level context beyond sentences via topics. While introducing topical semantics in language models, existing approaches incorporate latent document topic proportions and ignore topical discourse in sentences of the document. This work extends the line of research by additionally introducing an explainable topic representation in language understanding, obtained from a set of key terms correspondingly for each latent topic of the proportion. Moreover, we retain sentence-topic association along with document-topic association by modeling topical discourse for every sentence in the document. We present a novel neural composite language modeling (NCLM) framework that exploits both the latent and explainable topics along with topical discourse at sentence-level in a joint learning framework of topic and language models. Experiments over a range of tasks such as language modeling, word sense disambiguation, document classification, retrieval and text generation demonstrate ability of the proposed model in improving language understanding.

Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates
Yang Liu, Hongyi Guo

Learning with noisy labels is a common challenge in supervised learning. Existing approaches often require practitioners to specify noise rates, i.e., a set of parameters controlling the severity of label noises in the problem, and the specifications are either assumed to be given or estimated using additional steps. In this work, we introduce a new family of loss functions that we name as peer loss functions, which enables learning from noisy labels and does not require a priori specification of the noise rates. Peer loss functions work within the standard empirical risk minimization (ERM) framework. We show that, under mild conditions, performing ERM with peer loss functions on the noisy data leads to the optimal or a near-optimal classifier as if performing ERM over the clean training data, which we do not have access to. We pair our results with an extensive set of experiments. Peer loss provides a way to simplify model development when facing potentially noisy training labels, and can be promoted as a robust candidate loss function in such situations.

Poster Session 6 Tue 14 Jul 12:00 p.m.  

Constructive Universal High-Dimensional Distribution Generation through Deep ReLU Networks
Dmytro Perekrestenko, Stephan Müller, Helmut Bölcskei
We present an explicit deep neural network construction that transforms uniformly distributed one-dimensional noise into an arbitrarily close approximation of any two-dimensional Lipschitz-continuous target distribution. The key ingredient of our design is a generalization of the "space-filling" property of sawtooth functions discovered in (Bailey & Telgarsky, 2018). We elicit the importance of depth - in our neural network construction - in driving the Wasserstein distance between the target distribution and the approximation realized by the network to zero. An extension to output distributions of arbitrary dimension is outlined. Finally, we show that the proposed construction does not incur a cost - in terms of error measured in Wasserstein-distance - relative to generating $d$-dimensional target distributions from $d$ independent random variables.
Controlling Overestimation Bias with Truncated Mixture of Continuous Distributional Quantile Critics
Arsenii Kuznetsov, Pavel Shvechikov, Alexander Grishin, Dmitry Vetrov

The overestimation bias is one of the major impediments to accurate off-policy learning. This paper investigates a novel way to alleviate the overestimation bias in a continuous control setting. Our method---Truncated Quantile Critics, TQC,---blends three ideas: distributional representation of a critic, truncation of critics prediction, and ensembling of multiple critics. Distributional representation and truncation allow for arbitrary granular overestimation control, while ensembling provides additional score improvements. TQC outperforms the current state of the art on all environments from the continuous control benchmark suite, demonstrating 25% improvement on the most challenging Humanoid environment.

Bayesian Sparsification of Deep C-valued Networks
Ivan Nazarov, Evgeny Burnaev

With continual miniaturization ever more applications of deep learning can be found in embedded systems, where it is common to encounter data with natural representation in the complex domain. To this end we extend Sparse Variational Dropout to complex-valued neural networks and verify the proposed Bayesian technique by conducting a large numerical study of the performance-compression trade-off of C-valued networks on two tasks: image recognition on MNIST-like and CIFAR10 datasets and music transcription on MusicNet. We replicate the state-of-the-art result by Trabelsi et al. (2018) on MusicNet with a complex-valued network compressed by 50-100x at a small performance penalty.

Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization
GEOFFREY Negiar, Gideon Dresdner, Alicia Yi-Ting Tsai, Laurent El Ghaoui, Francesco Locatello, Robert Freund, Fabian Pedregosa

We propose a novel Stochastic Frank-Wolfe (a. k. a. conditional gradient) algorithm for constrained smooth finite-sum minimization with a generalized linear prediction/structure. This class of problems includes empirical risk minimization with sparse, low-rank, or other structured constraints. The proposed method is simple to implement, does not require step-size tuning, and has a constant per-iteration cost that is independent of the dataset size. Furthermore, as a byproduct of the method we obtain a stochastic estimator of the Frank-Wolfe gap that can be used as a stopping criterion. Depending on the setting, the proposed method matches or improves on the best computational guarantees for Stochastic Frank-Wolfe algorithms. Benchmarks on several datasets highlight different regimes in which the proposed method exhibits a faster empirical convergence than related methods. Finally, we provide an implementation of all considered methods in an open-source package.

Entropy Minimization In Emergent Languages
Eugene Kharitonov, Rahma Chaabouni, Diane Bouchacourt, Marco Baroni

There is growing interest in studying the languages that emerge when neural agents are jointly trained to solve tasks requiring communication through a discrete channel. We investigate here the information-theoretic complexity of such languages, focusing on the basic two-agent, one-exchange setup. We find that, under common training procedures, the emergent languages are subject to an entropy minimization pressure that has also been detected in human language, whereby the mutual information between the communicating agent's inputs and the messages is minimized, within the range afforded by the need for successful communication. That is, emergent languages are (nearly) as simple as the task they are developed for allow them to be. This pressure is amplified as we increase communication channel discreteness. Further, we observe that stronger discrete-channel-driven entropy minimization leads to representations with increased robustness to overfitting and adversarial attacks. We conclude by discussing the implications of our findings for the study of natural and artificial communication systems.

Normalizing Flows on Tori and Spheres
Danilo J. Rezende, George Papamakarios, Sebastien Racaniere, Michael Albergo, Gurtej Kanwar, Phiala Shanahan, Kyle Cranmer

Normalizing flows are a powerful tool for building expressive distributions in high dimensions. So far, most of the literature has concentrated on learning flows on Euclidean spaces. Some problems however, such as those involving angles, are defined on spaces with more complex geometries, such as tori or spheres. In this paper, we propose and compare expressive and numerically stable flows on such spaces. Our flows are built recursively on the dimension of the space, starting from flows on circles, closed intervals or spheres.

Restarted Bayesian Online Change-point Detector achieves Optimal Detection Delay
REDA ALAMI, Odalric-Ambrym Maillard, Raphaël Féraud
we consider the problem of sequential change-point detection where 
both the change-points and the distributions before and after the change are assumed to be unknown. For this problem of primary importance in statistical and sequential learning theory,  we derive a variant of the Bayesian Online Change Point Detector proposed by \cite{fearnhead2007line}
which is easier to analyze than the original version while keeping its powerful message-passing algorithm. 
We provide a non-asymptotic analysis of the false-alarm rate and the detection delay that matches the existing lower-bound. We further provide the first explicit high-probability control of the detection delay for such approach. Experiments on synthetic and real-world data show that this proposal outperforms the state-of-art change-point detection strategy, namely the Improved Generalized Likelihood Ratio (Improved GLR) while compares favorably with the original Bayesian Online Change Point Detection strategy.
Partial Trace Regression and Low-Rank Kraus Decomposition
Hachem Kadri, Stephane Ayache, Riikka Huusari, alain rakotomamonjy, Ralaivola Liva

The trace regression model, a direct extension of the well-studied linear regression model, allows one to map matrices to real-valued outputs. We here introduce an even more general model, namely the partial-trace regression model, a family of linear mappings from matrix-valued inputs to matrix-valued outputs; this model subsumes the trace regression model and thus the linear regression model. Borrowing tools from quantum information theory, where partial trace operators have been extensively studied, we propose a framework for learning partial trace regression models from data by taking advantage of the so-called low-rank Kraus representation of completely positive maps. We show the relevance of our framework with synthetic and real-world experiments conducted for both i) matrix-to-matrix regression and ii) positive semidefinite matrix completion, two tasks which can be formulated as partial trace regression problems.

Meta-Learning with Shared Amortized Variational Inference
Ekaterina Iakovleva, Jakob Verbeek, Karteek Alahari

We propose a novel amortized variational inference scheme for an empirical Bayes meta-learning model, where model parameters are treated as latent variables. We learn the prior distribution over model parameters conditioned on limited training data using a variational autoencoder approach. Our framework proposes sharing the same amortized inference network between the conditional prior and variational posterior distributions over the model parameters. While the posterior leverages both the labeled support and query data, the conditional prior is based only on the labeled support data. We show that in earlier work, relying on Monte-Carlo approximation, the conditional prior collapses to a Dirac delta function. In contrast, our variational approach prevents this collapse and preserves uncertainty over the model parameters. We evaluate our approach on the miniImageNet and FC100 datasets, and present results demonstrating its advantages over previous work.

TaskNorm: Rethinking Batch Normalization for Meta-Learning
John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, Richard E Turner

Modern meta-learning approaches for image classification rely on increasingly deep networks to achieve state-of-the-art performance, making batch normalization an essential component of meta-learning pipelines. However, the hierarchical nature of the meta-learning setting presents several challenges that can render conventional batch normalization ineffective, giving rise to the need to rethink normalization in this setting. We evaluate a range of approaches to batch normalization for meta-learning scenarios, and develop a novel approach that we call TaskNorm. Experiments on fourteen datasets demonstrate that the choice of batch normalization has a dramatic effect on both classification accuracy and training time for both gradient based- and gradient-free meta-learning approaches. Importantly, TaskNorm is found to consistently improve performance. Finally, we provide a set of best practices for normalization that will allow fair comparison of meta-learning algorithms.

A distributional view on multi-objective policy optimization
Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, Martin Riedmiller

Many real-world problems require trading off multiple competing objectives. However, these objectives are often in different units and/or scales, which can make it challenging for practitioners to express numerical preferences over objectives in their native units. In this paper we propose a novel algorithm for multi-objective reinforcement learning that enables setting desired preferences for objectives in a scale-invariant way. We propose to learn an action distribution for each objective, and we use supervised learning to fit a parametric policy to a combination of these distributions. We demonstrate the effectiveness of our approach on challenging high-dimensional real and simulated robotics tasks, and show that setting different preferences in our framework allows us to trace out the space of nondominated solutions.

Learning disconnected manifolds: a no GAN's land
Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, Jeremie Mary

Typical architectures of Generative Adversarial Networks make use of a unimodal latent/input distribution transformed by a continuous generator. Consequently, the modeled distribution always has connected support which is cumbersome when learning a disconnected set of manifolds. We formalize this problem by establishing a "no free lunch" theorem for the disconnected manifold learning stating an upper-bound on the precision of the targeted distribution. This is done by building on the necessary existence of a low-quality region where the generator continuously samples data between two disconnected modes. Finally, we derive a rejection sampling method based on the norm of generator’s Jacobian and show its efficiency on several generators including BigGAN.

Word-Level Speech Recognition With a Letter to Word Encoder
Ronan Collobert, Awni Hannun, Gabriel Synnaeve

We propose a direct-to-word sequence model which uses a word network to learn word embeddings from letters. The word network can be integrated seamlessly with arbitrary sequence models including Connectionist Temporal Classification and encoder-decoder models with attention. We show our direct-to-word model can achieve word error rate gains over sub-word level models for speech recognition. We also show that our direct-to-word approach retains the ability to predict words not seen at training time without any retraining. Finally, we demonstrate that a word-level model can use a larger stride than a sub-word level model while maintaining accuracy. This makes the model more efficient both for training and inference.

SimGANs: Simulator-Based Generative Adversarial Networks for ECG Synthesis to Improve Deep ECG Classification
Tomer Golany, Kira Radinsky, Daniel Freedman

Generating training examples for supervised tasks is a long sought after goal in AI. We study the problem of heart signal electrocardiogram (ECG) synthesis for improved heartbeat classification. ECG synthesis is challenging: the generation of training examples for such biological-physiological systems is not straightforward, due to their dynamic nature in which the various parts of the system interact in complex ways. However, an understanding of these dynamics has been developed for years in the form of mathematical process simulators. We study how to incorporate this knowledge into the generative process by leveraging a biological simulator for the task of ECG classification. Specifically, we use a system of ordinary differential equations representing heart dynamics, and incorporate this ODE system into the optimization process of a generative adversarial network to create biologically plausible ECG training examples. We perform empirical evaluation and show that heart simulation knowledge during the generation process improves ECG classification.

Multi-step Greedy Reinforcement Learning Algorithms
Manan Tomar, Yonathan Efroni, Mohammad Ghavamzadeh
Multi-step greedy policies have been extensively used in model-based reinforcement learning (RL), both when a model of the environment is available (e.g.,~in the game of Go) and when it is learned. In this paper, we explore their benefits in model-free RL, when employed using multi-step dynamic programming algorithms: $\kappa$-Policy Iteration ($\kappa$-PI) and $\kappa$-Value Iteration ($\kappa$-VI). These methods iteratively compute the next policy ($\kappa$-PI) and value function ($\kappa$-VI) by solving a surrogate decision problem with a shaped reward and a smaller discount factor. We derive model-free RL algorithms based on $\kappa$-PI and $\kappa$-VI in which the surrogate problem can be solved by any discrete or continuous action RL method, such as DQN and TRPO. We identify the importance of a hyper-parameter that controls the extent to which the surrogate problem is solved and suggest a way to set this parameter. When evaluated on a range of Atari and MuJoCo benchmark tasks, our results indicate that for the right range of $\kappa$, our algorithms outperform DQN and TRPO. This shows that our multi-step greedy algorithms are general enough to be applied over any existing RL algorithm and can significantly improve its performance.
On Contrastive Learning for Likelihood-free Inference
Conor Durkan, Iain Murray, George Papamakarios

Likelihood-free methods perform parameter inference in stochastic simulator models where evaluating the likelihood is intractable but sampling synthetic data is possible. One class of methods for this likelihood-free problem uses a classifier to distinguish between pairs of parameter-observation samples generated using the simulator and pairs sampled from some reference distribution, which implicitly learns a density ratio proportional to the likelihood. Another popular class of methods fits a conditional distribution to the parameter posterior directly, and a particular recent variant allows for the use of flexible neural density estimators for this task. In this work, we show that both of these approaches can be unified under a general contrastive learning scheme, and clarify how they should be run and compared.

IPBoost – Non-Convex Boosting via Integer Programming
Marc Pfetsch, Sebastian Pokutta

Recently non-convex optimization approaches for solving machine learning problems have gained significant attention. In this paper we explore non-convex boosting in classification by means of integer programming and demonstrate real-world practicability of the approach while circumvent- ing shortcomings of convex boosting approaches. We report results that are comparable to or better than the current state-of-the-art.

Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello, Ben Poole, Gunnar Ratsch, Bernhard Schölkopf, Olivier Bachem, Michael Tschannen

Intelligent agents should be able to learn useful representations by observing changes in their environment. We model such observations as pairs of non-i.i.d. images sharing at least one of the underlying factors of variation. First, we theoretically show that only knowing how many factors have changed, but not which ones, is sufficient to learn disentangled representations. Second, we provide practical algorithms that learn disentangled representations from pairs of images without requiring annotation of groups, individual factors, or the number of factors that have changed. Third, we perform a large-scale empirical study and show that such pairs of observations are sufficient to reliably learn disentangled representations on several benchmark data sets. Finally, we evaluate our learned representations and find that they are simultaneously useful on a diverse suite of tasks, including generalization under covariate shifts, fairness, and abstract reasoning. Overall, our results demonstrate that weak supervision enables learning of useful disentangled representations in realistic scenarios.

Understanding the Curse of Horizon in Off-Policy Evaluation via Conditional Importance Sampling
Yao Liu, Pierre-Luc Bacon, Emma Brunskill
Off-policy policy estimators that use importance sampling (IS) can suffer from high variance in long-horizon domains, and there has been particular excitement over new IS methods that leverage the structure of Markov decision processes. We analyze the variance of the most popular approaches through the viewpoint of conditional Monte Carlo. Surprisingly, we find that in finite horizon MDPs there is no strict variance reduction of per-decision importance sampling or stationary importance sampling, comparing with vanilla importance sampling. We then provide sufficient conditions under which the per-decision or stationary estimators will provably reduce the variance over importance sampling with finite horizons. For the asymptotic (in terms of horizon $T$) case, we develop upper and lower bounds on the variance of those estimators which yields sufficient conditions under which there exists an exponential v.s. polynomial gap between the variance of importance sampling and that of the per-decision or stationary estimators. These results help advance our understanding of if and when new types of IS estimators will improve the accuracy of off-policy estimation.
Ready Policy One: World Building Through Active Learning
Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, Stephen Roberts

Model-Based Reinforcement Learning (MBRL) offers a promising direction for sample efficient learning, often achieving state of the art results for continuous control tasks. However many existing MBRL methods rely on combining greedy policies with exploration heuristics, and even those which utilize principled exploration bonuses construct dual objectives in an ad hoc fashion. In this paper we introduce Ready Policy One (RP1), a framework that views MBRL as an active learning problem, where we aim to improve the world model in the fewest samples possible. RP1 achieves this by utilizing a hybrid objective function, which crucially adapts during optimization, allowing the algorithm to trade off reward v.s. exploration at different stages of learning. In addition, we introduce a principled mechanism to terminate sample collection once we have a rich enough trajectory batch to improve the model. We rigorously evaluate our method on a variety of continuous control tasks, and demonstrate statistically significant gains over existing approaches.

Learning Portable Representations for High-Level Planning
Steve James, Benjamin Rosman, George Konidaris

We present a framework for autonomously learning a portable representation that describes a collection of low-level continuous environments. We show that these abstract representations can be learned in a task-independent egocentric space specific to the agent that, when grounded with problem-specific information, are provably sufficient for planning. We demonstrate transfer in two different domains, where an agent learns a portable, task-independent symbolic vocabulary, as well as operators expressed in that vocabulary, and then learns to instantiate those operators on a per-task basis. This reduces the number of samples required to learn a representation of a new task.

Learning the piece-wise constant graph structure of a varying Ising model
Batiste Le Bars, Pierre Humbert, Argyris Kalogeratos, Nicolas Vayatis

This work focuses on the estimation of multiple change-points in a time-varying Ising model that evolves piece-wise constantly. The aim is to identify both the moments at which significant changes occur in the Ising model, as well as the underlying graph structures. For this purpose, we propose to estimate the neighborhood of each node by maximizing a penalized version of its conditional log-likelihood. The objective of the penalization is twofold: it imposes sparsity in the learned graphs and, thanks to a fused-type penalty, it also enforces them to evolve piece-wise constantly. Using few assumptions, we provide two change-points consistency theorems. Those are the first in the context of unknown number of change-points detection in time-varying Ising model. Finally, experimental results on several synthetic datasets and a real-world dataset demonstrate the performance of our method.

Learning to Simulate Complex Physics with Graph Networks
Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Zhitao Ying, Jure Leskovec, Peter Battaglia

Here we present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one another. Our framework---which we term "Graph Network-based Simulators" (GNS)---represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the training data with noise. Our GNS framework advances the state-of-the-art in learned physical simulation, and holds promise for solving a wide range of complex forward and inverse problems.

Poster Session 7 Tue 14 Jul 01:00 p.m.  

Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks
David Stutz, Matthias Hein, Bernt Schiele
Adversarial training yields robust models against a specific threat model, e.g., $L_\infty$ adversarial examples. Typically robustness does not generalize to previously unseen threat models, e.g., other $L_p$ norms, or larger perturbations. Our confidence-calibrated adversarial training (CCAT) tackles this problem by biasing the model towards low confidence predictions on adversarial examples. By allowing to reject examples with low confidence, robustness generalizes beyond the threat model employed during training. CCAT, trained only on $L_\infty$ adversarial examples, increases robustness against larger $L_\infty$, $L_2$, $L_1$ and $L_0$ attacks, adversarial frames, distal adversarial examples and corrupted examples and yields better clean accuracy compared to adversarial training. For thorough evaluation we developed novel white- and black-box attacks directly attacking CCAT by maximizing confidence. For each threat model, we use $7$ attacks with up to $50$ restarts and $5000$ iterations and report worst-case robust test error, extended to our confidence-thresholded setting, across all attacks.
Latent Space Factorisation and Manipulation via Matrix Subspace Projection
Xiao Li, Chenghua Lin, Ruizhe Li, Chaozheng Wang, Frank Guerin

We tackle the problem disentangling the latent space of an autoencoder in order to separate labelled attribute information from other characteristic information. This then allows us to change selected attributes while preserving other information. Our method, matrix subspace projection, is much simpler than previous approaches to latent space factorisation, for example not requiring multiple discriminators or a careful weighting among their loss functions. Furthermore our new model can be applied to autoencoders as a plugin, and works across diverse domains such as images or text. We demonstrate the utility of our method for attribute manipulation in autoencoders trained across varied domains, using both human evaluation and automated methods. The quality of generation of our new model (e.g. reconstruction, conditional generation) is highly competitive to a number of strong baselines.

Generalization to New Actions in Reinforcement Learning
Ayush Jain, Andrew Szot, Joseph Lim

A fundamental trait of intelligence is the ability to achieve goals in the face of novel circumstances, such as making decisions from new action choices. However, standard reinforcement learning assumes a fixed set of actions and requires expensive retraining when given a new action set. To make learning agents more adaptable, we introduce the problem of zero-shot generalization to new actions. We propose a two-stage framework where the agent first infers action representations from action information acquired separately from the task. A policy flexible to varying action sets is then trained with generalization objectives. We benchmark generalization on sequential tasks, such as selecting from an unseen tool-set to solve physical reasoning puzzles and stacking towers with novel 3D shapes. Videos and code are available at https://sites.google.com/view/action-generalization.

Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Joost van Amersfoort, Lewis Smith, Yee-Whye Teh, Yarin Gal

We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass. Our approach, deterministic uncertainty quantification (DUQ), builds upon ideas of RBF networks. We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models. By enforcing detectability of changes in the input using a gradient penalty, we are able to reliably detect out of distribution data. Our uncertainty quantification scales well to large datasets, and using a single model, we improve upon or match Deep Ensembles in out of distribution detection on notable difficult dataset pairs such as FashionMNIST vs. MNIST, and CIFAR-10 vs. SVHN.

Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise
Umut Simsekli, Lingjiong Zhu, Yee-Whye Teh, Mert Gurbuzbalaban

Stochastic gradient descent with momentum (SGDm) is one of the most popular optimization algorithms in deep learning. While there is a rich theory of SGDm for convex problems, the theory is considerably less developed in the context of deep learning where the problem is non-convex and the gradient noise might exhibit a heavy-tailed behavior, as empirically observed in recent studies. In this study, we consider a \emph{continuous-time} variant of SGDm, known as the underdamped Langevin dynamics (ULD), and investigate its asymptotic properties under heavy-tailed perturbations. Supported by recent studies from statistical physics, we argue both theoretically and empirically that the heavy-tails of such perturbations can result in a bias even when the step-size is small, in the sense that \emph{the optima of stationary distribution} of the dynamics might not match \emph{the optima of the cost function to be optimized}. As a remedy, we develop a novel framework, which we coin as \emph{fractional} ULD (FULD), and prove that FULD targets the so-called Gibbs distribution, whose optima exactly match the optima of the original cost. We observe that the Euler discretization of FULD has noteworthy algorithmic similarities with \emph{natural gradient} methods and \emph{gradient clipping}, bringing a new perspective on understanding their role …

Inertial Block Proximal Methods for Non-Convex Non-Smooth Optimization
Hien Le, Nicolas Gillis, Panagiotis Patrinos

We propose inertial versions of block coordinate descent methods for solving non-convex non-smooth composite optimization problems. Our methods possess three main advantages compared to current state-of-the-art accelerated first-order methods: (1) they allow using two different extrapolation points to evaluate the gradients and to add the inertial force (we will empirically show that it is more efficient than using a single extrapolation point), (2) they allow to randomly select the block of variables to update, and (3) they do not require a restarting step. We prove the subsequential convergence of the generated sequence under mild assumptions, prove the global convergence under some additional assumptions, and provide convergence rates. We deploy the proposed methods to solve non-negative matrix factorization (NMF) and show that they compete favorably with the state-of-the-art NMF algorithms. Additional experiments on non-negative approximate canonical polyadic decomposition, also known as nonnegative tensor factorization, are also provided.

Constant Curvature Graph Convolutional Networks
Gregor Bachmann, Gary Becigneul, Octavian Ganea

Interest has been rising lately towards methods representing data in non-Euclidean spaces, e.g. hyperbolic or spherical that provide specific inductive biases useful for certain real-world data properties, e.g. scale-free, hierarchical or cyclical. However, the popular graph neural networks are currently limited in modeling data only via Euclidean geometry and associated vector space operations. Here, we bridge this gap by proposing mathematically grounded generalizations of graph convolutional networks (GCN) to (products of) constant curvature spaces. We do this by i) introducing a unified formalism permitting a differentiable interpolation between all geometries of constant curvature irrespective of their sign, ii) leveraging gyro-barycentric coordinates that generalize the classic Euclidean concept of the center of mass. Our class of models smoothly recover their Euclidean counterparts when the curvature goes to zero from either side. Empirically, we outperform Euclidean GCNs in the tasks of node classification and distortion minimization for symbolic data exhibiting non-Euclidean behavior, according to their discrete curvature.

Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses
Pierre Laforgue, Alex Lambert, Luc Brogat-Motte, Florence d'Alche-Buc

Operator-Valued Kernels (OVKs) and associated vector-valued Reproducing Kernel Hilbert Spaces provide an elegant way to extend scalar kernel methods when the output space is a Hilbert space. Although primarily used in finite dimension for problems like multi-task regression, the ability of this framework to deal with infinite dimensional output spaces unlocks many more applications, such as functional regression, structured output prediction, and structured data representation. However, these sophisticated schemes crucially rely on the kernel trick in the output space, so that most of previous works have focused on the square norm loss function, completely neglecting robustness issues that may arise in such surrogate problems. To overcome this limitation, this paper develops a duality approach that allows to solve OVK machines for a wide range of loss functions. The infinite dimensional Lagrange multipliers are handled through a Double Representer Theorem, and algorithms for \epsilon-insensitive losses and the Huber loss are thoroughly detailed. Robustness benefits are emphasized by a theoretical stability analysis, as well as empirical improvements on structured data applications.

Online Convex Optimization in the Random Order Model
Dan Garber, Gal Korcia, Kfir Levy
Online Convex Optimization (OCO) is a powerful framework for sequential prediction, portraying the natural uncertainty inherent in data-streams as though the data were generated by an almost omniscient adversary. However, this view, which is often too pessimistic for real-world data, comes with a price. The complexity of solving many important online tasks in this adversarial framework becomes much worse than that of their offline and even stochastic counterparts. In this work we consider a natural random-order version of the OCO model, in which the adversary can choose the set of loss functions, but does not get to choose the order in which they are supplied to the learner; Instead, they are observed in uniformly random order. Focusing on two important families of online tasks, one which includes online linear regression, and the other being online $k$-PCA, we show that under standard well-conditioned-data assumptions, standard online gradient descent (OGD) methods become much more efficient in the random-order model. In particular, for the first group of tasks OGD guarantees poly-logarithmic regret (this result holds even without assuming convexity of individual loss functions). In the case of online $k$-PCA, OGD guarantees sublinear regret using only a rank-$k$ SVD on each iteration and memory …
Bayesian Differential Privacy for Machine Learning
Aleksei Triastcyn, Boi Faltings

Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in ML often excessively reduces accuracy. We propose Bayesian differential privacy (BDP), which takes into account the data distribution to provide more practical privacy guarantees. We also derive a general privacy accounting method under BDP, building upon the well-known moments accountant. Our experiments demonstrate that in-distribution samples in classic machine learning datasets, such as MNIST and CIFAR-10, enjoy significantly stronger privacy guarantees than postulated by DP, while models maintain high classification accuracy.

Temporal Logic Point Processes
Shuang Li, Lu Wang, Ruizhi Zhang, xiaofu Chang, Xuqin Liu, Yao Xie, Yuan Qi, Le Song

We propose a modeling framework for event data and aim to answer questions such as {\it when} and {\it why} the next event would happen. Our proposed model excels in small data regime with the ability to incorporate domain knowledge in terms of logic rules. We model the dynamics of the event starts and ends via intensity function with the structures informed by a set of first-order temporal logic rules. Using the softened representation of temporal relations, and a weighted combination of logic rules, our probabilistic model can deal with uncertainty in events. Furthermore, many well-known point processes (e.g., Hawkes process, self-correcting point process) can be interpreted as special cases of our model given simple temporal logic rules. Our model, therefore, riches the family of point processes. We derive a maximum likelihood estimation procedure for our model and show that it can lead to accurate predictions when data are sparse and domain knowledge is critical.

StochasticRank: Global Optimization of Scale-Free Discrete Functions
Aleksei Ustimenko, Liudmila Prokhorenkova

In this paper, we introduce a powerful and efficient framework for direct optimization of ranking metrics. The problem is ill-posed due to the discrete structure of the loss, and to deal with that, we introduce two important techniques: a stochastic smoothing and a novel gradient estimate based on partial integration. We also address the problem of smoothing bias and present a universal solution for a proper debiasing. To guarantee the global convergence of our method, we adopt a recently proposed Stochastic Gradient Langevin Boosting algorithm. Our algorithm is implemented as a part of the CatBoost gradient boosting library and outperforms the existing approaches on several learning-to-rank datasets. In addition to ranking metrics, our framework applies to any scale-free discrete loss function.

The Role of Regularization in Classification of High-dimensional Noisy Gaussian Mixture
Francesca Mignacco, Florent Krzakala, Yue Lu, Pierfrancesco Urbani, Lenka Zdeborova
We consider a high-dimensional mixture of two Gaussians in the noisy regime where even an oracle knowing the centers of the clusters misclassifies a small but finite fraction of the points. We provide a rigorous analysis of the generalization error of regularized convex classifiers, including ridge, hinge and logistic regression, in the high-dimensional limit where the number $n$ of samples and their dimension $d$ go to infinity while their ratio is fixed to $\alpha=n/d$. We discuss surprising effects of the regularization that in some cases allows to reach the Bayes-optimal performances. We also illustrate the interpolation peak at low regularization, and analyze the role of the respective sizes of the two clusters.
Near-Tight Margin-Based Generalization Bounds for Support Vector Machines
Allan Grønlund, Lior Kamma, Kasper Green Larsen

Support Vector Machines (SVMs) are among the most fundamental tools for binary classification.

In its simplest formulation, an SVM produces a hyperplane separating two classes of data using the largest possible margin to the data. The focus on maximizing the margin has been well motivated through numerous generalization bounds.

In this paper, we revisit and improve the classic generalization bounds in terms of margins. Furthermore, we complement our new generalization bound by a nearly matching lower bound, thus almost settling the generalization performance of SVMs in terms of margins.

Optimal Randomized First-Order Methods for Least-Squares Problems
Jonathan Lacotte, Mert Pilanci

We provide an exact analysis of a class of randomized algorithms for solving overdetermined least-squares problems. We consider first-order methods, where the gradients are pre-conditioned by an approximation of the Hessian, based on a subspace embedding of the data matrix. This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems. We focus on two classical embeddings, namely, Gaussian projections and subsampled randomized Hadamard transforms (SRHT). Our key technical innovation is the derivation of the limiting spectral density of SRHT embeddings. Leveraging this novel result, we derive the family of normalized orthogonal polynomials of the SRHT density and we find the optimal pre-conditioned first-order method along with its rate of convergence. Our analysis of Gaussian embeddings proceeds similarly, and leverages classical random matrix theory results. In particular, we show that for a given sketch size, SRHT embeddings exhibits a faster rate of convergence than Gaussian embeddings. Then, we propose a new algorithm by optimizing the computational complexity over the choice of the sketching dimension. To our knowledge, our resulting algorithm yields the best known complexity for solving least-squares problems with no condition number dependence.

Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions
Ahmed Alaa, Mihaela van der Schaar

Recurrent neural networks (RNNs) are instrumental in modelling sequential and time-series data. Yet, when using RNNs to inform decision-making, predictions by themselves are not sufficient — we also need estimates of predictive uncertainty. Existing approaches for uncertainty quantification in RNNs are based predominantly on Bayesian methods; these are computationally prohibitive, and require major alterations to the RNN architecture and training. Capitalizing on ideas from classical jackknife resampling, we develop a frequentist alternative that: (a) does not interfere with model training or compromise its accuracy, (b) applies to any RNN architecture, and (c) provides theoretical coverage guarantees on the estimated uncertainty intervals. Our method derives predictive uncertainty from the variability of the (jackknife) sampling distribution of the RNN outputs, which is estimated by repeatedly deleting “blocks” of (temporally-correlated) training data, and collecting the predictions of the RNN re-trained on the remaining data. To avoid exhaustive re-training, we utilize influence functions to estimate the effect of removing training data blocks on the learned RNN parameters. Using data from a critical care setting, we demonstrate the utility of uncertainty quantification in sequential decision-making.

Growing Action Spaces
Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, Gabriel Synnaeve

In complex tasks, such as those with large combinatorial action spaces, random exploration may be too inefficient to achieve meaningful learning progress. In this work, we use a curriculum of progressively growing action spaces to accelerate learning. We assume the environment is out of our control, but that the agent may set an internal curriculum by initially restricting its action space. Our approach uses off-policy reinforcement learning to estimate optimal value functions for multiple action spaces simultaneously and efficiently transfers data, value estimates, and state representations from restricted action spaces to the full task. We show the efficacy of our approach in proof-of-concept control tasks and on challenging large-scale StarCraft micromanagement tasks with large, multi-agent action spaces.

Equivariant Flows: Exact Likelihood Generative Learning for Symmetric Densities
Jonas Köhler, Leon Klein, Frank Noe

Normalizing flows are exact-likelihood generative neural networks which approximately transform samples from a simple prior distribution to samples of the probability distribution of interest. Recent work showed that such generative models can be utilized in statistical mechanics to sample equilibrium states of many-body systems in physics and chemistry. To scale and generalize these results, it is essential that the natural symmetries in the probability density -- in physics defined by the invariances of the target potential -- are built into the flow.
We provide a theoretical sufficient criterion showing that the distribution generated by equivariant normalizing flows is invariant with respect to these symmetries by design. Furthermore, we propose building blocks for flows which preserve symmetries which are usually found in physical/chemical many-body particle systems. Using benchmark systems motivated from molecular physics, we demonstrate that those symmetry preserving flows can provide better generalization capabilities and sampling efficiency.

Sequential Transfer in Reinforcement Learning with a Generative Model
Andrea Tirinzoni, Riccardo Poiani, Marcello Restelli

We are interested in how to design reinforcement learning agents that provably reduce the sample complexity for learning new tasks by transferring knowledge from previously-solved ones. The availability of solutions to related problems poses a fundamental trade-off: whether to seek policies that are expected to immediately achieve high (yet sub-optimal) performance in the new task or whether to seek information to quickly identify an optimal solution, potentially at the cost of poor initial behaviour. In this work, we focus on the second objective when the agent has access to a generative model of state-action pairs. First, given a set of solved tasks containing an approximation of the target one, we design an algorithm that quickly identifies an accurate solution by seeking the state-action pairs that are most informative for this purpose. We derive PAC bounds on its sample complexity which clearly demonstrate the benefits of using this kind of prior knowledge. Then, we show how to learn these approximate tasks sequentially by reducing our transfer setting to a hidden Markov model and employing spectral methods to recover its parameters. Finally, we empirically verify our theoretical findings in simple simulated domains.

An Explicitly Relational Neural Network Architecture
Murray Shanahan, Kyriacos Nikiforou, Antonia Creswell, Christos Kaplanis, David GT Barrett, Marta Garnelo

With a view to bridging the gap between deep learning and symbolic AI, we present a novel end-to-end neural network architecture that learns to form propositional representations with an explicitly relational structure from raw pixel data. In order to evaluate and analyse the architecture, we introduce a family of simple visual relational reasoning tasks of varying complexity. We show that the proposed architecture, when pre-trained on a curriculum of such tasks, learns to generate reusable representations that better facilitate subsequent learning on previously unseen tasks when compared to a number of baseline architectures. The workings of a successfully trained model are visualised to shed some light on how the architecture functions.

Adaptive Sampling for Estimating Probability Distributions
Shubhanshu Shekhar, Tara Javidi, Mohammad Ghavamzadeh
We consider the problem of allocating a fixed budget of samples to a finite set of discrete distributions to learn them uniformly well (minimizing the maximum error) in terms of four common distance measures: $\ell_2^2$, $\ell_1$, $f$-divergence, and separation distance. To present a unified treatment of these distances, we first propose a general \emph{optimistic tracking algorithm} and analyze its sample allocation performance w.r.t.~an oracle. We then instantiate this algorithm for the four distance measures and derive bounds on their regret. We also show that the allocation performance of the proposed algorithm cannot, in general, be improved, by deriving lower-bounds on the expected deviation from the oracle allocation for any adaptive scheme. We verify our theoretical findings through some experiments. Finally, we show that the techniques developed in the paper can be easily extended to learn some classes of continuous distributions as well as to the related setting of minimizing the average error (in terms of the four distances) in learning a set of distributions.
Graph Random Neural Features for Distance-Preserving Graph Representations
Daniele Zambon, Cesare Alippi, Lorenzo Livi

We present Graph Random Neural Features (GRNF), a novel embedding method from graph-structured data to real vectors based on a family of graph neural networks. The embedding naturally deals with graph isomorphism and preserves the metric structure of the graph domain, in probability. In addition to being an explicit embedding method, it also allows us to efficiently and effectively approximate graph metric distances (as well as complete kernel functions); a criterion to select the embedding dimension trading off the approximation accuracy with the computational cost is also provided. GRNF can be used within traditional processing methods or as a training-free input layer of a graph neural network. The theoretical guarantees that accompany GRNF ensure that the considered graph distance is metric, hence allowing to distinguish any pair of non-isomorphic graphs.

Distinguishing Cause from Effect Using Quantiles: Bivariate Quantile Causal Discovery
Natasa Tagasovska, Valérie Chavez-Demoulin, Thibault Vatter

Causal inference using observational data is challenging, especially in the bivariate case. Through the minimum description length principle, we link the postulate of independence between the generating mechanisms of the cause and of the effect given the cause to quantile regression. Based on this theory, we develop Bivariate Quantile Causal Discovery (bQCD), a new method to distinguish cause from effect assuming no confounding, selection bias or feedback. Because it uses multiple quantile levels instead of the conditional mean only, bQCD is adaptive not only to additive, but also to multiplicative or even location-scale generating mechanisms. To illustrate the effectiveness of our approach, we perform an extensive empirical comparison on both synthetic and real datasets. This study shows that bQCD is robust across different implementations of the method (i.e., the quantile regression), computationally efficient, and compares favorably to state-of-the-art methods.

Linear Mode Connectivity and the Lottery Ticket Hypothesis
Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, Michael Carbin

We study whether a neural network optimizes to the same, linearly connected minimum under different samples of SGD noise (e.g., random data order and augmentation). We find that standard vision models become stable to SGD noise in this way early in training. From then on, the outcome of optimization is determined to a linearly connected region. We use this technique to study iterative magnitude pruning (IMP), the procedure used by work on the lottery ticket hypothesis to identify subnetworks that could have trained in isolation to full accuracy. We find that these subnetworks only reach full accuracy when they are stable to SGD noise, which either occurs at initialization for small-scale settings (MNIST) or early in training for large-scale settings (ResNet-50 and Inception-v3 on ImageNet).

Inexact Tensor Methods with Dynamic Accuracies
Nikita Doikov, Yurii Nesterov
In this paper, we study inexact high-order Tensor Methods for solving convex optimization problems with composite objective. At every step of such methods, we use approximate solution of the auxiliary problem, defined by the bound for the residual in function value. We propose two dynamic strategies for choosing the inner accuracy: the first one is decreasing as $1/k^{p + 1}$, where $p \geq 1$ is the order of the method and $k$ is the iteration counter, and the second approach is using for the inner accuracy the last progress in the target objective. We show that inexact Tensor Methods with these strategies achieve the same global convergence rate as in the error-free case. For the second approach we also establish local superlinear rates (for $p \geq 2$), and propose the accelerated scheme. Lastly, we present computational results on a variety of machine learning problems for several methods and different accuracy policies.
Sample Factory: Egocentric 3D Control from Pixels at 100000 FPS with Asynchronous Reinforcement Learning
Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, Vladlen Koltun
Increasing the scale of reinforcement learning experiments has allowed researchers to achieve unprecedented results in both training sophisticated agents for video games, and in sim-to-real transfer for robotics. Typically such experiments rely on large distributed systems and require expensive hardware setups, limiting wider access to this exciting area of research. In this work we aim to solve this problem by optimizing the efficiency and resource utilization of reinforcement learning algorithms instead of relying on distributed computation. We present the "Sample Factory", a high-throughput training system optimized for a single-machine setting. Our architecture combines a highly efficient, asynchronous, GPU-based sampler with off-policy correction techniques, allowing us to achieve throughput higher than $10^5$ environment frames/second on non-trivial control problems in 3D without sacrificing sample efficiency. We extend Sample Factory to support self-play and population-based training and apply these techniques to train highly capable agents for a multiplayer first-person shooter game. Github: https://github.com/alex-petrenko/sample-factory
Predictive Sampling with Forecasting Autoregressive Models
Auke Wiggers, Emiel Hoogeboom

Autoregressive models (ARMs) currently hold state-of-the-art performance in likelihood-based modeling of image and audio data. Generally, neural network based ARMs are designed to allow fast inference, but sampling from these models is impractically slow. In this paper, we introduce the predictive sampling algorithm: a procedure that exploits the fast inference property of ARMs in order to speed up sampling, while keeping the model intact. We propose two variations of predictive sampling, namely sampling with ARM fixed-point iteration and learned forecasting modules. Their effectiveness is demonstrated in two settings: i) explicit likelihood modeling on binary MNIST, SVHN and CIFAR10, and ii) discrete latent modeling in an autoencoder trained on SVHN, CIFAR10 and Imagenet32. Empirically, we show considerable improvements over baselines in number of ARM inference calls and sampling speed.

Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural Network Initialization?
Yaniv Blumenfeld, Dar Gilboa, Daniel Soudry
Deep neural networks are typically initialized with random weights, with variances chosen to facilitate signal propagation and stable gradients. It is also believed that diversity of features is an important property of these initializations. We construct a deep convolutional network with identical features by initializing almost all the weights to $0$. The architecture also enables perfect signal propagation and stable gradients, and achieves high accuracy on standard benchmarks. This indicates that random, diverse initializations are \textit{not} necessary for training neural networks. An essential element in training this network is a mechanism of symmetry breaking; we study this phenomenon and find that standard GPU operations, which are non-deterministic, can serve as a sufficient source of symmetry breaking to enable training.
Implicit differentiation of Lasso-type models for hyperparameter optimization
Quentin Bertrand, Quentin Klopfenstein, Mathieu Blondel, Samuel Vaiter, Alexandre Gramfort, Joseph Salmon

Setting regularization parameters for Lasso-type estimators is notoriously difficult, though crucial for obtaining the best accuracy. The most popular hyperparameter optimization approach is grid-search on a held-out dataset. However, grid-search requires to choose a predefined grid of parameters and scales exponentially in the number of parameters. Another class of approaches casts hyperparameter optimization as a bi-level optimization problem, typically solved by gradient descent. The key challenge for these approaches is the estimation of the gradient w.r.t. the hyperparameters. Computing that gradient via forward or backward automatic differentiation usually suffers from high memory consumption, while implicit differentiation typically involves solving a linear system which can be prohibitive and numerically unstable. In addition, implicit differentiation usually assumes smooth loss functions, which is not the case of Lasso-type problems. This work introduces an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems. Our proposal scales to high-dimensional data by leveraging the sparsity of the solutions. Empirically, we demonstrate that the proposed method outperforms a large number of standard methods for hyperparameter optimization.

Learning with Good Feature Representations in Bandits and in RL with a Generative Model
Tor Lattimore, Csaba Szepesvari, Gellért Weisz

The construction in the recent paper by Du et al. [2019] implies that searching for a near-optimal action in a bandit sometimes requires examining essentially all the actions, even if the learner is given linear features in R^d that approximate the rewards with a small uniform error. We use the Kiefer-Wolfowitz theorem to prove a positive result that by checking only a few actions, a learner can always find an action that is suboptimal with an error of at most O(ε√d) where ε is the approximation error of the features. Thus, features are useful when the approximation error is small relative to the dimensionality of the features. The idea is applied to stochastic bandits and reinforcement learning with a generative model where the learner has access to d-dimensional linear features that approximate the action-value functions for all policies to an accuracy of ε. For linear bandits, we prove a bound on the regret of order d√(n log(k)) + εn√d log(n) with k the number of actions and n the horizon. For RL we show that approximate policy iteration can learn a policy that is optimal up to an additive error of order ε√d/(1 − γ)^2 and using about d/(ε^2(1 − …

Likelihood-free MCMC with Amortized Approximate Ratio Estimators
Joeri Hermans, Volodimir Begy, Gilles Louppe

Posterior inference with an intractable likelihood is becoming an increasingly common task in scientific domains which rely on sophisticated computer simulations. Typically, these forward models do not admit tractable densities forcing practitioners to rely on approximations. This work introduces a novel approach to address the intractability of the likelihood and the marginal model. We achieve this by learning a flexible amortized estimator which approximates the likelihood-to-evidence ratio. We demonstrate that the learned ratio estimator can be embedded in \textsc{mcmc} samplers to approximate likelihood-ratios between consecutive states in the Markov chain, allowing us to draw samples from the intractable posterior. Techniques are presented to improve the numerical stability and to measure the quality of an approximation. The accuracy of our approach is demonstrated on a variety of benchmarks against well-established techniques. Scientific applications in physics show its applicability.

Supervised learning: no loss no cry
Richard Nock, Aditya Menon

Supervised learning requires the specification of a loss function to minimise. While the theory of admissible losses from both a computational and statistical perspective is well-developed, these offer a panoply of different choices. In practice, this choice is typically made in an \emph{ad hoc} manner. In hopes of making this procedure more principled, the problem of \emph{learning the loss function} for a downstream task (e.g., classification) has garnered recent interest. However, works in this area have been generally empirical in nature. In this paper, we revisit the {\sc SLIsotron} algorithm of Kakade et al. (2011) through a novel lens, derive a generalisation based on Bregman divergences, and show how it provides a principled procedure for learning the loss. In detail, we cast {\sc SLIsotron} as learning a loss from a family of composite square losses. By interpreting this through the lens of \emph{proper losses}, we derive a generalisation of {\sc SLIsotron} based on Bregman divergences. The resulting {\sc BregmanTron} algorithm jointly learns the loss along with the classifier. It comes equipped with a simple guarantee of convergence for the loss it learns, and its set of possible outputs comes with a guarantee of agnostic approximability of Bayes rule. Experiments indicate …

GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation
Marc Brockschmidt

This paper presents a new Graph Neural Network (GNN) type using feature-wise linear modulation (FiLM). Many standard GNN variants propagate information along the edges of a graph by computing messages based only on the representation of the source of each edge. In GNN-FiLM, the representation of the target node of an edge is used to compute a transformation that can be applied to all incoming messages, allowing feature-wise modulation of the passed information.

Different GNN architectures are compared in extensive experiments on three tasks from the literature, using re-implementations of many baseline methods. Hyperparameters for all methods were found using extensive search, yielding somewhat surprising results: differences between state of the art models are much smaller than reported in the literature and well-known simple baselines that are often not compared to perform better than recently proposed GNN variants. Nonetheless, GNN-FiLM outperforms these methods on a regression task on molecular graphs and performs competitively on other tasks.

Meta-learning with Stochastic Linear Bandits
Leonardo Cella, Alessandro Lazaric, Massimiliano Pontil

We investigate meta-learning procedures in the setting of stochastic linear bandits tasks. The goal is to select a learning algorithm which works well on average over a class of bandits tasks, that are sampled from a task-distribution. Inspired by recent work on learning-to-learn linear regression, we consider a class of bandit algorithms that implement a regularized version of the well-known OFUL algorithm, where the regularization is a square euclidean distance to a bias vector. We first study the benefit of the biased OFUL algorithm in terms of regret minimization. We then propose two strategies to estimate the bias within the learning-to-learn setting. We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.

Non-Stationary Delayed Bandits with Intermediate Observations
Claire Vernade, András György, King Tim Mann

Online recommender systems often face long delays in receiving feedback, especially when optimizing for some long-term metrics. While mitigating the effects of delays in learning is well-understood in stationary environments, the problem becomes much more challenging when the environment changes. In fact, if the timescale of the change is comparable to the delay, it is impossible to learn about the environment, since the available observations are already obsolete. However, the arising issues can be addressed if intermediate signals are available without delay, such that given those signals, the long-term behavior of the system is stationary. To model this situation, we introduce the problem of stochastic, non-stationary, delayed bandits with intermediate observations. We develop a computationally efficient algorithm based on UCRL, and prove sublinear regret guarantees for its performance. Experimental results demonstrate that our method is able to learn in non-stationary delayed environments where existing methods fail.

Poster Session 8 Tue 14 Jul 02:00 p.m.  

Knowing The What But Not The Where in Bayesian Optimization
Vu Nguyen, Michael A Osborne

Bayesian optimization has demonstrated impressive success in finding the optimum input x∗ and output f∗ = f(x∗) = max f(x) of a black-box function f. In some applications, however, the optimum output is known in advance and the goal is to find the corresponding optimum input. Existing work in Bayesian optimization (BO) has not effectively exploited the knowledge of f∗ for optimization. In this paper, we consider a new setting in BO in which the knowledge of the optimum output is available. Our goal is to exploit the knowledge about f∗ to search for the input x∗ efficiently. To achieve this goal, we first transform the Gaussian process surrogate using the information about the optimum output. Then, we propose two acquisition functions, called confidence bound minimization and expected regret minimization, which exploit the knowledge about the optimum output to identify the optimum input more efficient. We show that our approaches work intuitively and quantitatively better performance against standard BO methods. We demonstrate real applications in tuning a deep reinforcement learning algorithm on the CartPole problem and XGBoost on Skin Segmentation dataset in which the optimum values are publicly available.

Interpretable, Multidimensional, Multimodal Anomaly Detection with Negative Sampling for Detection of Device Failure
John Sipple

In this paper we propose a scalable, unsupervised approach for detecting anomalies in the Internet of Things (IoT). Complex devices are connected daily and eagerly generate vast streams of multidimensional telemetry. These devices often operate in distinct modes based on external conditions (day/night, occupied/vacant, etc.), and to prevent complete or partial system outage, we would like to recognize as early as possible when these devices begin to operate outside the normal modes. We propose an unsupervised anomaly detection method that creates a negative sample from the positive, observed sample, and trains a classifier to distinguish between positive and negative samples. Using the Concentration Phenomenon, we explain why such a classifier ought to establish suitable decision boundaries between normal and anomalous regions, and show how Integrated Gradients can attribute the anomaly to specific dimensions within the anomalous state vector. We have demonstrated that negative sampling with random forest or neural network classifiers yield significantly higher AUC scores compared to state-of-the-art approaches against benchmark anomaly detection datasets, and a multidimensional, multimodal dataset from real climate control devices. Finally, we describe how negative sampling with neural network classifiers have been successfully deployed at large scale to predict failures in real time in over …

Debiased Sinkhorn barycenters
Hicham Janati, Marco Cuturi, Alexandre Gramfort

Entropy regularization in optimal transport (OT) has been the driver of many recent interests for Wasserstein metrics and barycenters in machine learning. It allows to keep the appealing geometrical properties of the unregularized Wasserstein distance while having a significantly lower complexity thanks to Sinkhorn's algorithm. However, entropy brings some inherent smoothing bias, resulting for example in blurred barycenters. This side effect has prompted an increasing temptation in the community to settle for a slower algorithm such as log-domain stabilized Sinkhorn which breaks the parallel structure that can be leveraged on GPUs, or even go back to unregularized OT. Here we show how this bias is tightly linked to the reference measure that defines the entropy regularizer and propose debiased Sinkhorn barycenters that preserve the best of worlds: fast Sinkhorn-like iterations without entropy smoothing. Theoretically, we prove that this debiasing is perfect for Gaussian distributions with equal variance. Empirically, we illustrate the reduced blurring and the computational advantage.

Learning Similarity Metrics for Numerical Simulations
Georg Kohl, Kiwon Um, Nils Thuerey

We propose a neural network-based approach that computes a stable and generalizing metric (LSiM) to compare data from a variety of numerical simulation sources. We focus on scalar time-dependent 2D data that commonly arises from motion and transport-based partial differential equations (PDEs). Our method employs a Siamese network architecture that is motivat