Monitoring and explainability of models in production
Janis Klaise
2020 Contributed talk
in
Workshop: Challenges in Deploying and Monitoring Machine Learning Systems
in
Workshop: Challenges in Deploying and Monitoring Machine Learning Systems
Abstract
The machine learning lifecycle extends beyond the deployment stage. Monitoring deployed models is crucial for continued provision of high quality machine learning enabled services. Key areas include model performance and data monitoring, detecting outliers and data drift using statistical techniques, and providing explanations of historic predictions. We discuss the challenges to successful implementation of solutions in each of these areas with some recent examples of production ready solutions using open source tools.
Video
Chat is not available.
Successful Page Load