Workshop
Uncertainty and Robustness in Deep Learning
Sharon Yixuan Li · Dan Hendrycks · Thomas Dietterich · Balaji Lakshminarayanan · Justin Gilmer
Hall B
Fri 14 Jun, 8:30 a.m. PDT
There has been growing interest in rectifying deep neural network vulnerabilities. Challenges arise when models receive samples drawn from outside the training distribution. For example, a neural network tasked with classifying handwritten digits may assign high confidence predictions to cat images. Anomalies are frequently encountered when deploying ML models in the real world. Well-calibrated predictive uncertainty estimates are indispensable for many machine learning applications, such as self-driving cars and medical diagnosis systems. Generalization to unseen and worst-case inputs is also essential for robustness to distributional shift. In order to have ML models reliably predict in open environment, we must deepen technical understanding in the following areas: (1) learning algorithms that are robust to changes in input data distribution (e.g., detect out-of-distribution examples); (2) mechanisms to estimate and calibrate confidence produced by neural networks and (3) methods to improve robustness to adversarial and common corruptions, and (4) key applications for uncertainty such as in artificial intelligence (e.g., computer vision, robotics, self-driving cars, medical imaging) as well as broader machine learning tasks.
This workshop will bring together researchers and practitioners from the machine learning communities, and highlight recent work that contribute to address these challenges. Our agenda will feature contributed papers with invited speakers. Through the workshop we hope to help identify fundamentally important directions on robust and reliable deep learning, and foster future collaborations.
Live content is unavailable. Log in and register to view live content