Session
Deep Learning (Neural Network Architectures) 1
DiCE: The Infinitely Differentiable Monte Carlo Estimator
Jakob Foerster · Gregory Farquhar · Maruan Al-Shedivat · Tim Rocktäschel · Eric Xing · Shimon Whiteson
The score function estimator is widely used for estimating gradients of stochastic objectives in stochastic computation graphs (SCG), eg., in reinforcement learning and meta-learning. While deriving the first-order gradient estimators by differentiating a surrogate loss (SL) objective is computationally and conceptually simple, using the same approach for higher-order derivatives is more challenging. Firstly, analytically deriving and implementing such estimators is laborious and not compliant with automatic differentiation. Secondly, repeatedly applying SL to construct new objectives for each order derivative involves increasingly cumbersome graph manipulations. Lastly, to match the first-order gradient under differentiation, SL treats part of the cost as a fixed sample, which we show leads to missing and wrong terms for estimators of higher-order derivatives. To address all these shortcomings in a unified way, we introduce DiCE, which provides a single objective that can be differentiated repeatedly, generating correct estimators of derivatives of any order in SCGs. Unlike SL, DiCE relies on automatic differentiation for performing the requisite graph manipulations. We verify the correctness of DiCE both through a proof and numerical evaluation of the DiCE derivative estimates. We also use DiCE to propose and evaluate a novel approach for multi-agent learning. Our code is available at https://goo.gl/xkkGxN.
Learning to search with MCTSnets
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver
Planning problems are among the most important and well-studied problems in artificial intelligence. They are most typically solved by tree search algorithms that simulate ahead into the future, evaluate future states, and back-up those evaluations to the root of a search tree. Among these algorithms, Monte-Carlo tree search (MCTS) is one of the most general, powerful and widely used. A typical implementation of MCTS uses cleverly designed rules, optimised to the particular characteristics of the domain. These rules control where the simulation traverses, what to evaluate in the states that are reached, and how to back-up those evaluations. In this paper we instead learn where, what and how to search. Our architecture, which we call an MCTSnet, incorporates simulation-based search inside a neural network, by expanding, evaluating and backing-up a vector embedding. The parameters of the network are trained end-to-end using gradient-based optimisation. When applied to small searches in the well-known planning problem Sokoban, the learned search algorithm significantly outperformed MCTS baselines.
Differentiable plasticity: training plastic neural networks with backpropagation
Thomas Miconi · Kenneth Stanley · Jeff Clune
How can we build agents that keep learning from experience, quickly and efficiently, after their initial training? Here we take inspiration from the main mechanism of learning in biological brains: synaptic plasticity, carefully tuned by evolution to produce efficient lifelong learning. We show that plasticity, just like connection weights, can be optimized by gradient descent in large (millions of parameters) recurrent networks with Hebbian plastic connections. First, recurrent plastic networks with more than two million parameters can be trained to memorize and reconstruct sets of novel, high-dimensional (1000+ pixels) natural images not seen during training. Crucially, traditional non-plastic recurrent networks fail to solve this task. Furthermore, trained plastic networks can also solve generic meta-learning tasks such as the Omniglot task, with competitive results and little parameter overhead. Finally, in reinforcement learning settings, plastic networks outperform non-plastic equivalent in a maze exploration task. We conclude that differentiable plasticity may provide a powerful novel approach to the learning-to-learn problem.
TACO: Learning Task Decomposition via Temporal Alignment for Control
Kyriacos Shiarlis · Markus Wulfmeier · Sasha Salter · Shimon Whiteson · Ingmar Posner
Many advanced Learning from Demonstration (LfD) methods consider the decomposition of complex, real-world tasks into simpler sub-tasks.By reusing the corresponding sub-policies within and between tasks, we can provide training data for each policy from different high-level tasks and compose them to perform novel ones.Existing approaches to modular LfD focus either on learning a single high-level task or depend on domain knowledge and temporal segmentation. In contrast, we propose a weakly supervised, domain-agnostic approach based on task sketches, which include only the sequence of sub-tasks performed in each demonstration. Our approachsimultaneously aligns the sketches with the observed demonstrations and learns the required sub-policies. This improves generalisation in comparison to separate optimisation procedures.We evaluate the approach on multiple domains, including a simulated 3D robot arm control task using purely image-based observations. The results show that our approach performs commensurately with fully supervised approaches, while requiring significantly less annotation effort.
Graph Networks as Learnable Physics Engines for Inference and Control
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia
Understanding and interacting with everyday physical scenes requires rich knowledge about the structure of the world, represented either implicitly in a value or policy function, or explicitly in a transition model. Here we introduce a new class of learnable models--based on graph networks--which implement an inductive bias for object- and relation-centric representations of complex, dynamical systems. Our results show that as a forward model, our approach supports accurate predictions from real and simulated data, and surprisingly strong and efficient generalization, across eight distinct physical systems which we varied parametrically and structurally. We also found that our inference model can perform system identification. Our models are also differentiable, and support online planning via gradient-based trajectory optimization, as well as offline policy optimization. Our framework offers new opportunities for harnessing and exploiting rich knowledge about the world, and takes a key step toward building machines with more human-like representations of the world.