Skip to yearly menu bar Skip to main content


Oral

TACO: Learning Task Decomposition via Temporal Alignment for Control

Kyriacos Shiarlis · Markus Wulfmeier · Sasha Salter · Shimon Whiteson · Ingmar Posner

Abstract:

Many advanced Learning from Demonstration (LfD) methods consider the decomposition of complex, real-world tasks into simpler sub-tasks.By reusing the corresponding sub-policies within and between tasks, we can provide training data for each policy from different high-level tasks and compose them to perform novel ones.Existing approaches to modular LfD focus either on learning a single high-level task or depend on domain knowledge and temporal segmentation. In contrast, we propose a weakly supervised, domain-agnostic approach based on task sketches, which include only the sequence of sub-tasks performed in each demonstration. Our approachsimultaneously aligns the sketches with the observed demonstrations and learns the required sub-policies. This improves generalisation in comparison to separate optimisation procedures.We evaluate the approach on multiple domains, including a simulated 3D robot arm control task using purely image-based observations. The results show that our approach performs commensurately with fully supervised approaches, while requiring significantly less annotation effort.

Chat is not available.