( events)   Timezone: »  
The 2020 schedule is still incomplete Program Highlights »
Wed Jul 15 10:00 AM -- 10:45 AM & Wed Jul 15 11:00 PM -- 11:45 PM (PDT)
Evolutionary Topology Search for Tensor Network Decomposition
Chao Li · Zhun Sun

Tensor network (TN) decomposition is a promising framework to represent extremely high-dimensional problems with few parameters. However, it is challenging to search the (near-)optimal topological structure for TN decomposition, since the number of candidate solutions exponentially grows with increasing the order of a tensor. In this paper, we claim that this issue can be practically tackled by evolutionary algorithms in an affordable manner. We encode the complex topological structures into binary strings, and develop a simple genetic meta-algorithm to search the optimal topology on Hamming space. The experimental results by both synthetic and real-world data demonstrate that our method can effectively discover the ground-truth topology or even better structures with few number of generations, and significantly boost the representational power of TN decomposition compared with well-known tensor-train (TT) or tensor-ring (TR) models.