Poster
From Pixels to Perception: Interpretable Predictions via Instance-wise Grouped Feature Selection
Moritz Vandenhirtz · Julia Vogt
East Exhibition Hall A-B #E-1106
Understanding the decision-making process of machine learning models provides valuable insights into the task, the data, and the reasons behind a model's failures. In this work, we propose a method that performs inherently interpretable predictions through the instance-wise sparsification of input images. To align the sparsification with human perception, we learn the masking in the space of semantically meaningful pixel regions rather than on pixel-level. Additionally, we introduce an explicit way to dynamically determine the required level of sparsity for each instance. We show empirically on semi-synthetic and natural image datasets that our inherently interpretable classifier produces more meaningful, human-understandable predictions than state-of-the-art benchmarks.
(1) Often, a user does not know why Machine Learning models make a certain prediction. (2) We develop a method that only uses a small part of an image for its prediction. (3) With this method, a user knows which parts of the image were used to make a prediction.
Live content is unavailable. Log in and register to view live content