Skip to yearly menu bar Skip to main content


Poster

Cover learning for large-scale topology representation

Luis Scoccola · Uzu Lim · Heather Harrington

[ ] [ Project Page ]
Thu 17 Jul 11 a.m. PDT — 1:30 p.m. PDT

Abstract:

Classical unsupervised learning methods like clustering and linear dimensionality reduction parametrize large-scale geometrywhen it is discrete or linear, while more modern methods from manifold learning find low dimensional representation or infer local geometry by constructing a graph on the input data. More recently, topological data analysis popularized the use of simplicial complexes to represent data topology with two main methodologies: topological inference with geometric complexes and large-scale topology representation with Mapper graphs -- central to these is the nerve construction from topology, which builds a simplicial complex given any cover of a space by subsets. While successful, these have limitations: geometric complexes scale poorly with data size, and Mapper graphs can be hard to tune and only contain low dimensional information. In this paper, we propose to study the problem of learning covers in its own right, and from the perspective of optimization. We describe a method to learn topologically-faithful covers of geometric datasets, and show that the simplicial complexes thus obtained can outperform standard topological inference approaches in terms of size, and Mapper-type algorithms in terms of representation of large-scale topology.

Live content is unavailable. Log in and register to view live content