Large-Scale Training Data Attribution for Music Generative Models via Unlearning
Abstract
This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific model. This is crucial in the context of AI-generated music, where proper recognition and credit for original artists are generally overlooked. By enabling white-box attribution, our work supports a fairer system for acknowledging artistic contributions and addresses pressing concerns related to AI ethics and copyright. We apply unlearning-based attribution to a text-to-music diffusion model trained on a large-scale dataset and investigate its feasibility and behavior in this setting. To validate the method, we perform a grid search over different hyperparameter configurations and quantitatively evaluate the consistency of the unlearning approach. We then compare attribution patterns from unlearning with those from a similarity-based approach. Our findings suggest that unlearning-based approaches can be effectively adapted to music generative models, introducing large-scale TDA to this domain and paving the way for more ethical and accountable AI systems for music creation.