Workshop
|
Fri 9:30
|
Keynote by Max Welling: A Nonparametric Bayesian Approach to Deep Learning (without GPs)
Max Welling
|
|
Poster
|
Wed 18:30
|
Scalable Nonparametric Sampling from Multimodal Posteriors with the Posterior Bootstrap
Edwin Fong · Simon Lyddon · Christopher Holmes
|
|
Oral
|
Wed 14:30
|
Variational Russian Roulette for Deep Bayesian Nonparametrics
Kai Xu · Akash Srivastava · Charles Sutton
|
|
Oral
|
Thu 16:20
|
Nonparametric Bayesian Deep Networks with Local Competition
Konstantinos Panousis · Sotirios Chatzis · Sergios Theodoridis
|
|
Poster
|
Tue 18:30
|
Rates of Convergence for Sparse Variational Gaussian Process Regression
David Burt · Carl E Rasmussen · Mark van der Wilk
|
|
Poster
|
Wed 18:30
|
Variational Russian Roulette for Deep Bayesian Nonparametrics
Kai Xu · Akash Srivastava · Charles Sutton
|
|
Poster
|
Wed 18:30
|
Random Function Priors for Correlation Modeling
Aonan Zhang · John Paisley
|
|
Poster
|
Wed 18:30
|
Graph Convolutional Gaussian Processes
Ian Walker · Ben Glocker
|
|
Poster
|
Wed 18:30
|
Distribution calibration for regression
Hao Song · Tom Diethe · Meelis Kull · Peter Flach
|
|
Poster
|
Wed 18:30
|
Incorporating Grouping Information into Bayesian Decision Tree Ensembles
JUNLIANG DU · Antonio Linero
|
|
Poster
|
Tue 18:30
|
Bayesian Deconditional Kernel Mean Embeddings
Kelvin Hsu · Fabio Ramos
|
|
Poster
|
Wed 18:30
|
Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with double power-law behavior
Fadhel Ayed · Juho Lee · Francois Caron
|
|