Skip to yearly menu bar Skip to main content


Search All 2019 Events
 

67 Results

<<   <   Page 1 of 6   >   >>
Oral
Thu 12:00 Spectral Approximate Inference
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin
Poster
Wed 18:30 The Variational Predictive Natural Gradient
Da Tang · Rajesh Ranganath
Poster
Thu 18:30 Spectral Approximate Inference
Sejun Park · Eunho Yang · Se-Young Yun · Jinwoo Shin
Poster
Tue 18:30 GMNN: Graph Markov Neural Networks
Meng Qu · Yoshua Bengio · Jian Tang
Poster
Tue 18:30 Look Ma, No Latent Variables: Accurate Cutset Networks via Compilation
Tahrima Rahman · Shasha Jin · Vibhav Gogate
Poster
Tue 18:30 Inference and Sampling of K33-free Ising Models
Valerii Likhosherstov · Yury Maximov · Misha Chertkov
Poster
Thu 18:30 Variational Laplace Autoencoders
Yookoon Park · Chris Kim · Gunhee Kim
Poster
Tue 18:30 Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang Liu · Jingwei Zhuo · Jun Zhu
Oral
Tue 11:20 Calibrated Approximate Bayesian Inference
Hanwen Xing · Geoff Nicholls · Jeong Lee
Poster
Wed 18:30 Discovering Latent Covariance Structures for Multiple Time Series
Anh Tong · Jaesik Choi
Poster
Wed 18:30 Nonlinear Stein Variational Gradient Descent for Learning Diversified Mixture Models
Dilin Wang · Qiang Liu
Poster
Thu 18:30 A Polynomial Time MCMC Method for Sampling from Continuous Determinantal Point Processes
Alireza Rezaei · Shayan Oveis Gharan