Oral
Deep Counterfactual Regret Minimization
Noam Brown · Adam Lerer · Sam Gross · Tuomas Sandholm
Counterfactual Regret Minimization (CFR) is the leading algorithm for solving large imperfect-information games. It iteratively traverses the game tree in order to converge to a Nash equilibrium. In order to deal with extremely large games, CFR typically uses domain-specific heuristics to simplify the target game in a process known as abstraction. This simplified game is solved with tabular CFR, and its solution is mapped back to the full game. This paper introduces DeepRegret, a form of CFR that obviates the need for abstraction by instead using deep neural networks to approximate the behavior of CFR in the full game. We show that DeepRegret is principled and achieves strong performance in large poker games. This is the first non-tabular variant of CFR to be successful in large games.