Deep Counterfactual Regret Minimization

Noam Brown^{*12}, Adam Lerer^{*1}, Sam Gross¹, Tuomas Sandholm²³

*Equal Contribution ¹Facebook AI Research ²Carnegie Mellon University ³Strategic Machine Inc., Strategy Robot Inc., and Optimized Markets Inc.

Carnegie Mellon University

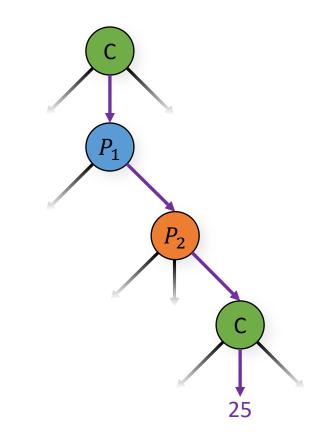
Counterfactual Regret Minimization (CFR)

[Zinkevich et al. NeurIPS-07]

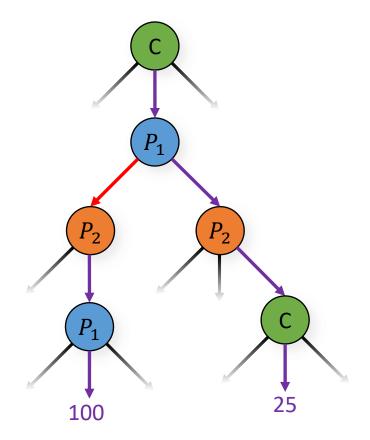
- **CFR** is the leading algorithm for solving partially observable games
 - Iteratively converges to an equilibrium
 - Used by *every* top poker AI in the past 7 years, including *Libratus*
 - Every single one used a tabular form of CFR

- This paper introduces a **function approximation** form of CFR using deep neural networks
 - Less domain knowledge
 - Easier to apply to other games

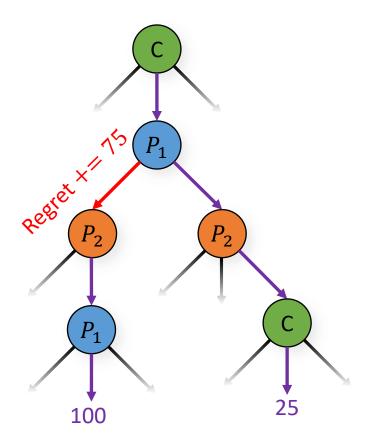
• Simulate a game with one player designated as the **traverser**



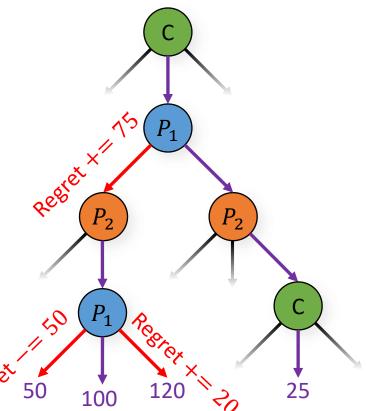
- Simulate a game with one player designated as the **traverser**
- After game ends, traverser sees how much better she could have done by choosing other actions



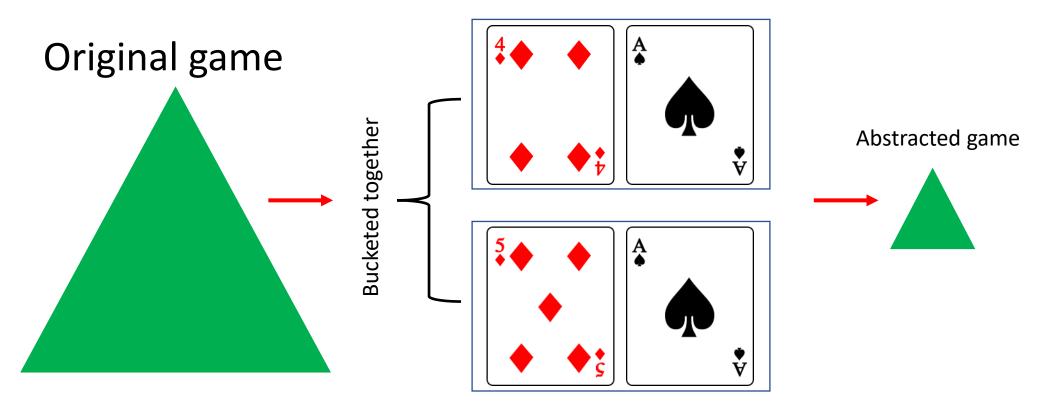
- Simulate a game with one player designated as the **traverser**
- After game ends, traverser sees how much better she could have done by choosing other actions
- This difference is added to the action's regret. In future iterations, actions with higher regret are chosen with higher probability



- Simulate a game with one player designated as the **traverser**
- After game ends, traverser sees how much better she could have done by choosing other actions
- This difference is added to the action's regret. In future iterations, actions with higher regret are chosen with higher probability
- Process repeats even for hypothetical decision points



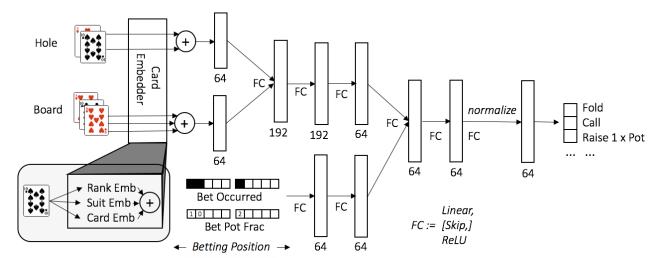
Prior Approach: Abstraction in Games



- Requires extensive domain knowledge
 - Several papers written on how to do abstraction just in poker
 - Difficult to extend to other games

Deep CFR

- Input: low-level features (visible cards, observed actions)
- Output: estimate of action regrets
- On each iteration:
 - 1. Collect samples of action regrets, add to a buffer
 - 2. Train a network to predict regrets
 - 3. Use network's regret estimates to play on next iteration



Deep CFR

- Input: low-level features (visible cards, observed actions)
- Output: estimate of action regrets
- On each iteration:
 - 1. Collect samples of action regrets, add to a buffer
 - 2. Train a network to predict regrets
 - 3. Use network's regret estimates to play on next iteration
- Theorem: With arbitrarily high probability, Deep CFR converges to an *ϵ*-Nash equilibrium in two-player zero-sum games, where *ϵ* is determined by prediction error

Experimental results in limit Texas hold'em

- Deep CFR produces superhuman performance in heads-up limit Texas hold'em poker
 - ~ 10 trillion decision points
 - Once played competitively by humans
- Deep CFR outperforms Neural Fictitious Self Play (NFSP), the prior best deep RL algorithm for partially observable games [Heinrich & Silver arXiv-15]
 - Deep CFR is also much more sample efficient
- Deep CFR is competitive with domain-specific abstraction algorithms

Conclusions

- Among algorithms for non-tabular solving of partially-observable games, Deep CFR is the fastest, most sample-efficient, and produces the best results
- Uses less domain knowledge than abstraction-based approaches, making it easier to apply to other games