Skip to yearly menu bar Skip to main content


Tutorial

Optimization Perspectives on Learning to Control

Benjamin Recht

A9

Abstract:

Given the dramatic successes in machine learning over the past half decade, there has been a resurgence of interest in applying learning techniques to continuous control problems in robotics, self-driving cars, and unmanned aerial vehicles. Though such applications appear to be straightforward generalizations of reinforcement learning, it remains unclear which machine learning tools are best equipped to handle decision making, planning, and actuation in highly uncertain dynamic environments.

This tutorial will survey the foundations required to build machine learning systems that reliably act upon the physical world. The primary technical focus will be on numerical optimization tools at the interface of statistical learning and dynamical systems. We will investigate how to learn models of dynamical systems, how to use data to achieve objectives in a timely fashion, how to balance model specification and system controllability, and how to safely acquire new information to improve performance. We will close by listing several exciting open problems that must be solved before we can build robust, reliable learning systems that interact with an uncertain environment.

Live content is unavailable. Log in and register to view live content