Session
Deep Learning (Theory) 8
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor · Shubhendu Trivedi
Convolutional neural networks have been extremely successful in the image recognition domain because they ensure equivariance with respect to translations. There have been many recent attempts to generalize this framework to other domains, including graphs and data lying on manifolds. In this paper we give a rigorous, theoretical treatment of convolution and equivariance in neural networks with respect to not just translations, but the action of any compact group. Our main result is to prove that (given some natural constraints) convolutional structure is not just a sufficient, but also a necessary condition for equivariance to the action of a compact group. Our exposition makes use of concepts from representation theory and noncommutative harmonic analysis and derives new generalized convolution formulae.
Bounding and Counting Linear Regions of Deep Neural Networks
Thiago Serra · Christian Tjandraatmadja · Srikumar Ramalingam
We investigate the complexity of deep neural networks (DNN) that represent piecewise linear (PWL) functions. In particular, we study the number of linear regions, i.e. pieces, that a PWL function represented by a DNN can attain, both theoretically and empirically. We present (i) tighter upper and lower bounds for the maximum number of linear regions on rectifier networks, which are exact for inputs of dimension one; (ii) a first upper bound for multi-layer maxout networks; and (iii) a first method to perform exact enumeration or counting of the number of regions by modeling the DNN with a mixed-integer linear formulation. These bounds come from leveraging the dimension of the space defining each linear region. The results also indicate that a deep rectifier network can only have more linear regions than every shallow counterpart with same number of neurons if that number exceeds the dimension of the input.
DCFNet: Deep Neural Network with Decomposed Convolutional Filters
Qiang Qiu · Xiuyuan Cheng · robert Calderbank · Guillermo Sapiro
Filters in a Convolutional Neural Network (CNN) contain model parameters learned from enormous amounts of data.In this paper, we suggest to decompose convolutional filters in CNN as a truncated expansion with pre-fixed bases, namely the Decomposed Convolutional Filters network (DCFNet), where the expansion coefficients remain learned from data. Such a structure not only reduces the number of trainable parameters and computation, but also imposes filter regularity by bases truncation. Through extensive experiments, we consistently observe that DCFNet maintains accuracy for image classification tasks with a significant reduction of model parameters, particularly with Fourier-Bessel (FB) bases, and even with random bases. Theoretically, we analyze the representation stability of DCFNet with respect to input variations, and prove representation stability under generic assumptions on the expansion coefficients. The analysis is consistent with the empirical observations.
A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations
Weili Nie · Yang Zhang · Ankit Patel
Backpropagation-based visualizations have been proposed to interpret convolutional neural networks (CNNs), however a theory is missing to justify their behaviors: Guided backpropagation (GBP) and deconvolutional network (DeconvNet) generate more human-interpretable but less class-sensitive visualizations than saliency map. Motivated by this, we develop a theoretical explanation revealing that GBP and DeconvNet are essentially doing (partial) image recovery which is unrelated to the network decisions. Specifically, our analysis shows that the backward ReLU introduced by GBP and DeconvNet, and the local connections in CNNs are the two main causes of compelling visualizations. Extensive experiments are provided that support the theoretical analysis.